25 research outputs found

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    The effect of heater fragmentation and mixed grazing on the diet of sheep Ovis aries and red deer Cervus elaphus

    No full text
    The effects of vegetation fragmentation and mixed grazing (ie mono- or multi-species animal group) on the diet composition of sheep and red deer grazing mosaics of grassland and heather moorland was studied, using faecal cuticle analysis, in two experimental sites in Scotland during the summer of 1992 and 1993. On Site A, the influence of grassland fragmentation on diet composition was estimated for sheep and deer grazing together in plots where the grassland (20% of the area) was artificially distributed as one large, four medium or twelve small patches within a homogeneous moorland matrix (80% of the area). On Site B, differences in diet composition between animals grazing within mono-species (sheep or deer) and multi-species groups (sheep and deer together) were examined for each animal species. In this site all plots used contained a similar natural mosaic pattern of grass and heather (ie similar mixtures of patch sizes, with about 20% grass and 80% heather cover). On Site A, the proportions of grass in the diet of sheep (73%) and deer (27%) were found to be similar across all levels of grass fragmentation. A significant interaction was found between the pattern of fragmentation and the three periods in which the experiment was carried out. On Site B in 1992, sheep had more grass in their diet than did deer (52% vs 46%), and the diets of both sheep and deer responded in the same fashion when the species were grazing in mono- or multi-species groups. The consumption of grass decreased in both species throughout the period studied, Deer showed no change in the proportion of grass in their diet in the presence or absence of sheep in 1992 (deer 48% vs sheep 50%). But on Site B in 1993, the diet of sheep contained a significantly higher proportion of grasses when they were grazing with red deer (52%) than when they were grazing alone (38%). These results suggest that on grassland/heather moorland mosaics sheep may suffer intraspecies competition to a greater extent than do red deer, particularly where grass is in relatively low supply

    Evolution of body size in the genus Damaliscus: a comparison with hartebeest Alcelaphus spp.

    No full text
    In species with low levels of sexual size dimorphism, it may be relatively easy to detect the role of natural selection in the evolution of body size. Habitat primary production (HPP) appears to be a key factor in the divergence of size in the hartebeest clade (Alcelaphus spp.), such that subspecies in less productive savannahs are smaller than those in richer ones. Here I test whether a similar pattern exists within the genus Damaliscus (topi and their allies). Basal skull length was used as a surrogate of body size and measured in the seven allopatric subspecies of Damaliscus. Means for each subspecies and sex were regressed against climatic factors as surrogates of HPP. Variation in skull length across Damaliscus taxa was less than in hartebeest. Two clusters were present in both sexes and corresponded to the distinction between the species, Damaliscus dorcas and Damaliscus lunatus. This may reflect differences in productivity between edaphic grasslands, occupied by all D. lunatus, and dry grasslands, occupied by D. dorcas. Mean annual rainfall was the best predictor of body size in males and showed a non-significant positive tendency in females. After accounting for phylogenetic effects, these correlations were both non-significant. Edaphic grasslands might be less dependent on precipitation for primary production because the impeded drainage of their soil prolongs water availability after the end of the rains. Furthermore, they are probably more consistent in productivity across African regions than secondary grasslands and savannah woodlands, which rely on rainfall for grass growth. These properties of edaphic grasslands may explain why size in Damaliscus appears to be less sensitive to variation in rainfall and less variable across subspecies than in Alcelaphus

    Evidence for coevolution of sociality and relative brain size in three orders of mammals

    No full text
    As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The "social brain hypothesis" argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this
    corecore