4,739 research outputs found

    Localized magnetic plasmons in all-dielectric mu<0 metastructures

    Full text link
    Metamaterials are known to exhibit a variety of electromagnetic properties non-existing in nature. We show that an all-dielectric (non-magnetic) system consisting of deep subwavelength, high permittivity resonant spheres possess effective negative magnetic permeability (dielectric permittivity being positive and small). Due to the symmetry of the electromagnetic wave equations in classical electrodynamics, localized "magnetic" plasmon resonances can be excited in a metasphere made of such metamaterial. This is theoretically demonstrated by the coupled-dipole approximation and numerically for real spheres, in full agreement with the exact analytical solution for the scattering process by the same metasphere with effective material properties predicted by effective medium theory. The emergence of this phenomenon as a function of structural order within the metastructures is also studied. Universal conditions enabling effective negative magnetic permeability relate subwavelength sphere permittivity and size with critical filling fraction. Our proposal paves the way towards (all-dielectric) magnetic plasmonics, with a wealth of fascinating applications.Comment: 7 pages, 4 figures; figure 3 modified and new figure (4) added, with corresponding discussio

    Thermal Effect on TL Response of Single Doped LiF+NaF:RE Polycrystalline Phosphors

    Get PDF
    In this work, the sintering and annealing effects on the thermoluminescent (TL) behavior of undoped and rare earth (RE)-doped LiF+NaF powder samples (RE = Ce3+, Eu3+, Lu3+ or Tl+, at 0.5 mol%) was analyzed by evaluating the sensitivity to gamma radiation and TL response of the material. The polycrystalline samples were obtained by solid state reaction at 1000°C. The samples were irradiated in a Gammacell-3000 Elan irradiator loaded with 137Cs sources. The glow curves of the LiF+NaF doped with lutetium or thallium show an intense glow peak at about 175°C and 135°C, respectively. When the phosphor was doped with cerium or europium the glow curves were complex in their structure, with TL peaks observed at 155°C and 165°C, respectively. The linear dose-response was between 10 and 50 Gy for cerium, europium or lutetium doped LiF+NaF samples, while for the thallium doped and undoped samples such intervals were 10-100 Gy and 10-500 Gy, respectively. Because the shape of the glow curves were complex, the analysis was carried out in (i) samples without a sintering treatment where the TL response was found insensitive to pre-irradiation annealing treatment, and (ii) sintered samples (300, 350, 400 or 500 °C), in this last case the TL response was dependent on the annealing temperature (100-400 °C), finally (iii) the kinetics parameters of the glow curves were analyzed by assuming a general order kinetics model. The observed glow curves and TL characteristics of the LiF+NaF:RE phosphor make attractive this material to be useful in gamma dose dosimetry

    A Study of the Near-Ultraviolet Spectrum of Vega

    Full text link
    UV, optical, and near-IR spectra of Vega have been combined to test our understanding of stellar atmospheric opacities, and to examine the possibility of constraining chemical abundances from low-resolution UV fluxes. We have carried out a detailed analysis assuming Local Thermodynamic Equilibrium (LTE) to identify the most important contributors to the UV continuous opacity: H, H^{-}, C I, and Si II. Our analysis also assumes that Vega is spherically symmetric and its atmosphere is well described with the plane parallel approximation. Comparing observations and computed fluxes we have been able to discriminate between two different flux scales that have been proposed, the IUE-INES and the HST scales, favoring the latter. The effective temperature and angular diameter derived from the analysis of observed optical and near-UV spectra are in very good agreement with previous determinations based on different techniques. The silicon abundance is poorly constrained by the UV observations of the continuum and strong lines, but the situation is more favorable for carbon and the abundances inferred from the UV continuum and optical absorption lines are in good agreement. Some spectral intervals in the UV spectrum of Vega that the calculations do not reproduce well are likely affected by deviations from LTE, but we conclude that our understanding of UV atmospheric opacities is fairly complete for early A-type stars.Comment: 13 pages, 9 figures, to be published in Ap

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice

    Get PDF
    Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species

    Effect of Lifestyle Intervention in the Concentration of Adipoquines and Branched Chain Amino Acids in Subjects with High Risk of Developing Type 2 Diabetes: Feel4Diabetes Study

    Get PDF
    Introduction: The global prevalence of type 2 diabetes (T2D) is increasing rapidly, especially in low- and middle-income countries and has a high number of associated comorbidities. Plasmatic concentrations of branched chain amino acids (BCAA) and retinol-binding protein 4 (RBP4) have been shown to be elevated in T2D subjects in cross-sectional studies. However, the effect of lifestyle community-based interventions on BCAA and RBP4 concentrations has not yet been analyzed. Material and methods: The Feel4Diabetes study is a school and community-based intervention that identified 360 European families with a high risk of developing T2D according to the FINDRISC questionnaire. Families were randomized in control and intervention groups were followed-up from 2016 to 2018. In the Spanish families, the concentration of BCAA and RBP4 was determined in 266 subjects (115 control and 151 intervention group) that attended the three time-point assessments by colorimetric and ELISA reaction, respectively. Results: Baseline BCAA levels showed positive correlations with the FINDRISC score and glucose impairment (baseline glucose, insulin, and glycated hemoglobin), body mass index, and body weight. The participants receiving the community-based intervention showed a significant decrease in glycated hemoglobin and BCAA levels compared to the control group (p = 0.011 and p < 0.001, respectively). However, baseline RBP4 did not show significant correlations with anthropometric and glycemic parameters, and no significant change was observed in anthropometric parameters and RBP4 concentrations throughout the follow-up. Conclusion: A community-based intervention on lifestyle led to a significant reduction in BCAA levels regardless of weight loss. These findings suggest that this interventional approach could be promising in T2D prevention

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Stellar Population gradients in galaxy discs from the CALIFA survey

    Get PDF
    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at \sim2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&

    Critical parameters of the three-dimensional Ising spin glass

    Full text link
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several universal quantities at Tc.Comment: 9 pages, 5 figure
    corecore