2,177 research outputs found

    Influence of the Environment Fluctuations on Incoherent Neutron Scattering Functions

    Full text link
    In extending the conventional dynamic models, we consider a simple model to account for the environment fluctuations of particle atoms in a protein system and derive the elastic incoherent structure factor (EISF) and the incoherent scattering correlation function C(Q,t) for both the jump dynamics between sites with fluctuating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the system (or the normalized elastic intensity) is equal to that in the absence of fluctuations averaged over the distribution of site interspacing or sphere radius a. The scattering correlation function is C(Q,t)=nψ(t)C(Q,t)=\sum_{n} \psi(t), where the average is taken over the Q-dependent effective distribution of relaxation rates \lambda_n(a) and \psi(t) is the correlation function of the length a. When \psi(t)=1, the relaxation of C(Q,t) is exponential for the jump dynamics between sites (since \lambda_n(a) is independent of a) while it is nonexponential for diffusion inside a sphere.Comment: 7 pages, 7 eps figure

    H^+ -> W^+ l_i^- l_j^+$ decay in the two Higgs doublet model

    Full text link
    We study the lepton flavor violating H^+ -> W^+ l_i^- l_j^+ and the lepton flavor conserving $H^+ -> W^+ l_i^- l_i^+ (l_i=\tau, l_j=\mu) decays in the general 2HDM, so called model III. We estimate the decay width \Gamma for LFV (LFC) at the order of the magnitude of (10^{-11}-10^{-5}) GeV ((10^{-9}-10^{-4}) GeV), for 200 GeV\leq m_{H^\pm}\leq 400 GeV, and the intermediate values of the coupling \bar{\xi}^{E}_{N,\tau \mu}\sim 5 GeV (\bar{\xi}^{E}_{N,\tau \tau}\sim 30 GeV). We observe that the experimental result of the process under consideration can give comprehensive information about the physics beyond the standard model and the existing free parameters.Comment: 8 pages, 7 Figure

    Synapse efficiency diverges due to synaptic pruning following over-growth

    Full text link
    In the development of the brain, it is known that synapses are pruned following over-growth. This pruning following over-growth seems to be a universal phenomenon that occurs in almost all areas -- visual cortex, motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-growth, and analytically show that the synapse efficiency diverges as O(log c) at the limit where connecting rate c is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maximize memory performance, exists.Comment: 15 pages, 16 figure

    Replica Symmetry Breaking in Attractor Neural Network Models

    Full text link
    The phenomenon of replica symmetry breaking is investigated for the retrieval phases of Hopfield-type network models. The basic calculation is done for the generalized version of the standard model introduced by Horner [1] and by Perez-Vicente and Amit [2] which can exhibit low mean levels of neural activity. For a mean activity aˉ=1/2\bar a =1/2 the Hopfield model is recovered. In this case, surprisingly enough, we cannot confirm the well known one step replica symmetry breaking (1RSB) result for the storage capacity which was presented by Crisanti, Amit and Gutfreund [3] (\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.144). Rather, we find that 1RSB- and 2RSB-Ans\"atze yield only slightly increased capacities as compared to the replica symmetric value (\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.138\,186 and \alpha_c^{\hbox{\mf 2RSB}}\simeq 0.138\,187 compared to \alpha_c^{\hbox{\mf RS}}\simeq 0.137\,905), significantly smaller also than the value \alpha_c^{\hbox{\mf sim}} = 0.145\pm 0.009 reported from simulation studies. These values still lie within the recently discovered reentrant phase [4]. We conjecture that in the infinite Parisi-scheme the reentrant behaviour disappears as is the case in the SK-spin-glass model (Parisi--Toulouse-hypothesis). The same qualitative results are obtained in the low activity range.Comment: Latex file, 20 pages, 8 Figures available from the authors upon request, HD-TVP-94-

    Resonant Raman scattering off neutral quantum dots

    Full text link
    Resonant inelastic (Raman) light scattering off neutral GaAs quantum dots which contain a mean number, N=42, of electron-hole pairs is computed. We find Raman amplitudes corresponding to strongly collective final states (charge-density excitations) of similar magnitude as the amplitudes related to weakly collective or single-particle excitations. As a function of the incident laser frequency or the magnetic field, they are rapidly varying amplitudes. It is argued that strong Raman peaks should come out in the spin-density channels, not related to valence-band mixing effects in the intermediate states.Comment: Accepted in Physical Review

    Generalized Uncertainty Principle, Modified Dispersion Relations and Early Universe Thermodynamics

    Full text link
    In this paper, we study the effects of Generalized Uncertainty Principle(GUP) and Modified Dispersion Relations(MDRs) on the thermodynamics of ultra-relativistic particles in early universe. We show that limitations imposed by GUP and particle horizon on the measurement processes, lead to certain modifications of early universe thermodynamics.Comment: 21 Pages, 3 eps Figure, Revised Versio

    Ground-state energy and entropy of the two-dimensional Edwards-Anderson spin-glass model with different bond distributions

    Get PDF
    We study the two-dimensional Edwards-Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provide accurate values of this quantity for finite-size lattices. By extrapolating to the thermodynamic limit, the ground-state energy and entropy of the different versions of the spin-glass model are determined.Comment: 18 pages, 5 figure

    Realistic construction of split fermion models

    Get PDF
    The Standard Model flavor structure can be explained in theories where the fermions are localized on different points in a compact extra dimension. We show that models with two bulk scalars compactified on an orbifold can produce such separations in a natural way. We study the shapes and overlaps of the fermion wave functions. We show that, generically, realistic models of Gaussian overlaps are unnatural since they require very large Yukawa couplings between the fermions and the bulk scalars. We give an example of a five dimensional two scalar model that accounts naturally for the observed quark masses, mixing angles and CP violation.Comment: 15 pages, 5 figures, typos corrected, discussion on the implications of SM rare decay processes added, to appear in PR

    Interruption of the Arterial Inferior Alveolar Flow and its Effects on Mandibular Collateral Circulation and Dental Tissues

    Full text link
    The interruption of circulation through the inferior alveolar artery was followed by the establishment of a fast retrograde blood flow through the vessel. The mental artery and the mandibular branch of the sublingual artery were the main vessels to contribute to that flow. No histopathologic changes were found in the experimental hemimandibles; however, temporary regressive changes were found in the dental pulps of molars.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67920/2/10.1177_00220345750540040301.pd
    corecore