6 research outputs found

    An Open-set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

    Get PDF
    The problem of training a deep neural network with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning (DL) algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high number of samples. In the image domain, typical FSL applications are those related to face recognition. In the audio domain, music fraud or speaker recognition can be clearly benefited from FSL methods. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, using a limited number of samples. These sounds typically occur in domestic environments where many events corresponding to a wide variety of sound classes take place. Therefore, the detection of such alarms in a practical scenario can be considered an open-set recognition (OSR) problem. To address the lack of a dedicated public dataset for audio FSL, researchers usually make modifications on other available datasets. This paper is aimed at providing the audio recognition community with a carefully annotated dataset for FSL and OSR comprised of 1360 clips from 34 classes divided into pattern sounds and unwanted sounds. To facilitate and promote research in this area, results with two baseline systems (one trained from scratch and another based on transfer learning), are presented.Comment: To be submitted to Expert System with Application

    Open Set Audio Classification Using Autoencoders Trained on Few Data

    No full text
    Open-set recognition (OSR) is a challenging machine learning problem that appears when classifiers are faced with test instances from classes not seen during training. It can be summarized as the problem of correctly identifying instances from a known class (seen during training) while rejecting any unknown or unwanted samples (those belonging to unseen classes). Another problem arising in practical scenarios is few-shot learning (FSL), which appears when there is no availability of a large number of positive samples for training a recognition system. Taking these two limitations into account, a new dataset for OSR and FSL for audio data was recently released to promote research on solutions aimed at addressing both limitations. This paper proposes an audio OSR/FSL system divided into three steps: a high-level audio representation, feature embedding using two different autoencoder architectures and a multi-layer perceptron (MLP) trained on latent space representations to detect known classes and reject unwanted ones. An extensive set of experiments is carried out considering multiple combinations of openness factors (OSR condition) and number of shots (FSL condition), showing the validity of the proposed approach and confirming superior performance with respect to a baseline system based on transfer learning

    A Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

    Get PDF
    Residual learning is known for being a learning framework that facilitates the training of very deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation alternatives arise with respect to where such skip connections are applied within the set of stacked layers making up a residual block. While residual networks for image classification using convolutional neural networks (CNNs) have been widely discussed in the literature, their adoption for 1D end-to-end architectures is still scarce in the audio domain. Thus, the suitability of different residual block designs for raw audio classification is partly unknown. The purpose of this article is to compare, analyze and discuss the performance of several residual block implementations, the most commonly used in image classification problems, within a state-of-the-art CNN-based architecture for end-to-end audio classification using raw audio waveforms. Deep and careful statistical analyses over six different residual block alternatives are conducted, considering two well-known datasets and common input normalization choices. The results show that, while some significant differences in performance are observed among architectures using different residual block designs, the selection of the most suitable residual block can be highly dependent on the input data.publishedVersionPeer reviewe
    corecore