6,467 research outputs found

    Physical effects of the Immirzi parameter

    Full text link
    The Immirzi parameter is a constant appearing in the general relativity action used as a starting point for the loop quantization of gravity. The parameter is commonly believed not to show up in the equations of motion, because it appears in front of a term in the action that vanishes on shell. We show that in the presence of fermions, instead, the Immirzi term in the action does not vanish on shell, and the Immirzi parameter does appear in the equations of motion. It determines the coupling constant of a four-fermion interaction. Therefore the Immirzi parameter leads to effects that are observable in principle, even independently from nonperturbative quantum gravity.Comment: 3 pages. Substantial revision from the first versio

    The complete LQG propagator: II. Asymptotic behavior of the vertex

    Full text link
    In a previous article we have show that there are difficulties in obtaining the correct graviton propagator from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that a vertex amplitude that depends nontrivially on the intertwiners can yield the correct propagator. We give an explicit example of asymptotic behavior of a vertex amplitude that gives the correct full graviton propagator in the large distance limit.Comment: 16 page

    A simple background-independent hamiltonian quantum model

    Full text link
    We study formulation and probabilistic interpretation of a simple general-relativistic hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the ℏ→0\hbar\to 0 limit. Our main tool is the kernel of the projector on the solutions of Wheeler-deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates "forward" as well as "backward" in a local parameter time. Individual quantum states, on the other hand, may contain only "forward propagating" components. The analysis sheds some light on the interpretation of background independent transition amplitudes in quantum gravity

    Multiple-event probability in general-relativistic quantum mechanics

    Get PDF
    We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse

    The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex

    Full text link
    Some components of the graviton two-point function have been recently computed in the context of loop quantum gravity, using the spinfoam Barrett-Crane vertex. We complete the calculation of the remaining components. We find that, under our assumptions, the Barrett-Crane vertex does not yield the correct long distance limit. We argue that the problem is general and can be traced to the intertwiner-independence of the Barrett-Crane vertex, and therefore to the well-known mismatch between the Barrett-Crane formalism and the standard canonical spin networks. In a companion paper we illustrate the asymptotic behavior of a vertex amplitude that can correct this difficulty.Comment: 31 page

    The loop-quantum-gravity vertex-amplitude

    Full text link
    Spinfoam theories are hoped to provide the dynamics of non-perturbative loop quantum gravity. But a number of their features remain elusive. The best studied one -the euclidean Barrett-Crane model- does not have the boundary state space needed for this, and there are recent indications that, consequently, it may fail to yield the correct low-energy nn-point functions. These difficulties can be traced to the SO(4) -> SU(2) gauge fixing and the way certain second class constraints are imposed, arguably incorrectly, strongly. We present an alternative model, that can be derived as a bona fide quantization of a Regge discretization of euclidean general relativity, and where the constraints are imposed weakly. Its state space is a natural subspace of the SO(4) spin-network space and matches the SO(3) hamiltonian spin network space. The model provides a long sought SO(4)-covariant vertex amplitude for loop quantum gravity.Comment: 6page

    3+1 spinfoam model of quantum gravity with spacelike and timelike components

    Get PDF
    We present a spinfoam formulation of Lorentzian quantum General Relativity. The theory is based on a simple generalization of an Euclidean model defined in terms of a field theory over a group. The model is an extension of a recently introduced Lorentzian model, in which both timelike and spacelike components are included. The spinfoams in the model, corresponding to quantized 4-geometries, carry a natural non-perturbative local causal structure induced by the geometry of the algebra of the internal gauge (sl(2,C)). Amplitudes can be expressed as integrals over the spacelike unit-vectors hyperboloid in Minkowski space, or the imaginary Lobachevskian space.Comment: 16 pages, 1 figur

    Three dimensional loop quantum gravity: physical scalar product and spin foam models

    Full text link
    In this paper, we address the problem of the dynamics in three dimensional loop quantum gravity with zero cosmological constant. We construct a rigorous definition of Rovelli's generalized projection operator from the kinematical Hilbert space--corresponding to the quantization of the infinite dimensional kinematical configuration space of the theory--to the physical Hilbert space. In particular, we provide the definition of the physical scalar product which can be represented in terms of a sum over (finite) spin-foam amplitudes. Therefore, we establish a clear-cut connection between the canonical quantization of three dimensional gravity and spin-foam models. We emphasize two main properties of the result: first that no cut-off in the kinematical degrees of freedom of the theory is introduced (in contrast to standard `lattice' methods), and second that no ill-defined sum over spins (`bubble' divergences) are present in the spin foam representation.Comment: Typos corrected, version appearing in Class. Quant. Gra

    On the Physical Hilbert Space of Loop Quantum Cosmology

    Full text link
    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology
    • …
    corecore