5,319 research outputs found

    Ensemble decision systems for general video game playing

    Get PDF
    Ensemble Decision Systems offer a unique form of decision making that allows a collection of algorithms to reason together about a problem. Each individual algorithm has its own inherent strengths and weaknesses, and often it is difficult to overcome the weaknesses while retaining the strengths. Instead of altering the properties of the algorithm, the Ensemble Decision System augments the performance with other algorithms that have complementing strengths. This work outlines different options for building an Ensemble Decision System as well as providing analysis on its performance compared to the individual components of the system with interesting results, showing an increase in the generality of the algorithms without significantly impeding performance.Comment: 8 Pages, Accepted at COG201

    Maine Distributed Solar Valuation Study

    Get PDF
    During its 2014 session, the Maine Legislature enacted an Act to Support Solar Energy Development in Maine. P.L Chapter 562 (April 24, 2014) (codified at 35‐A M.R.S. §§ 3471‐3473) (“Act”). Section 1 of the Act contains the Legislative finding that it is in the public interest is to develop renewable energy resources, including solar energy, in a manner that protects and improves the health and well‐being of the citizens and natural environment of the State while also providing economic benefits to communities, ratepayers and the overall economy of the State. Section 2 of the Act requires the Public Utilities Commission (Commission) to determine the value of distributed solar energy generation in the State, evaluate implementation options, and to deliver a report to the Legislature. To support this work, the Commission engaged a project team comprising Clean Power Research (Napa, California), Sustainable Energy Advantage (Framingham, Massachusetts), Pace Energy and Climate Center at the Pace Law School (White Plains, New York), and Dr. Richard Perez (Albany, New York). Under the project, the team developed the methodology under a Commission‐run stakeholder review process, conducted a valuation on distributed solar for three utility territories, and developed a summary of implementation options for increasing deployment of distributed solar generation in the State. The report includes three volumes which accompany this Executive Summary: Volume I Methodology; Volume II Valuation Results; Volume III Implementation Options

    Electrocardiographic repolarization-related variables as predictors of coronary heart disease death in the women's health initiative study.

    Get PDF
    BackgroundWe evaluated 25 repolarization-related ECG variables for the risk of coronary heart disease (CHD) death in 52 994 postmenopausal women from the Women's Health Initiative study.Methods and resultsHazard ratios from Cox regression were computed for subgroups of women with and without cardiovascular disease (CVD). During the average follow-up of 16.9 years, 941 CHD deaths occurred. Based on electrophysiological considerations, 2 sets of ECG variables with low correlations were considered as candidates for independent predictors of CHD death: Set 1, Ѳ(Tp|Tref), the spatial angle between T peak (Tp) and normal T reference (Tref) vectors; Ѳ(Tinit|Tterm), the angle between the initial and terminal T vectors; STJ depression in V6 and rate-adjusted QTp interval (QTpa); and Set 2, TaVR and TV1 amplitudes, heart rate, and QRS duration. Strong independent predictors with over 2-fold increased risk for CHD death in women with and without CVD were Ѳ(Tp|Tref) >42° from Set 1 and TaVR amplitude >-100 μV from Set 2. The risk for these CHD death predictors remained significant after multivariable adjustment for demographic/clinical factors. Other significant predictors for CHD death in fully adjusted risk models were Ѳ(Tinit|Tterm) >30°, TV1 >175 μV, and QRS duration >100 ms.ConclusionsѲ(Tp|Tref) angle and TaVR amplitude are associated with CHD mortality in postmenopausal women. The use of these measures to identify high-risk women for further diagnostic evaluation or more intense preventive intervention warrants further study.Clinical trial registration urlhttp://www.clinicaltrials.gov. Unique identifier: NCT00000611

    Modulation of Thermoelectric Power of Individual Carbon Nanotubes

    Full text link
    Thermoelectric power (TEP) of individual single walled carbon nanotubes (SWNTs) has been measured at mesoscopic scales using a microfabricated heater and thermometers. Gate electric field dependent TEP-modulation has been observed. The measured TEP of SWNTs is well correlated to the electrical conductance across the SWNT according to the Mott formula. At low temperatures, strong modulations of TEP were observed in the single electron conduction limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let

    A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems - insights from 3D virtual human atria and torso

    Get PDF
    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms

    A location-aware framework for intelligent real-time mobile applications

    Get PDF
    The Location-Aware Information Systems Client (LAISYC) supports intelligent, real-time, mobile applications for GPS-enabled mobile phones by dynamically adjusting platform parameters for application performance while conserving device resources such as battery life
    corecore