
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

7-8-2010

A location-aware framework for intelligent real-time mobile A location-aware framework for intelligent real-time mobile

applications applications

Sean J. Barbeau

Rafael A. Perez

Miguel A. Labrador

Alfredo J. Perez

Nevine Labib Georggi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
http://library.unomaha.edu/
http://library.unomaha.edu/

Authors Authors
Sean J. Barbeau, Rafael A. Perez, Miguel A. Labrador, Alfredo J. Perez, Nevine Labib Georggi, and Philip L.
Winters

A Location-aware Framework for intelligent real-time
Mobile applications
Sean J. Barbeau, Rafael A. Perez, Miguel A. Labrador, Alfredo J. Perez, Philip L.
Winters, and Nevine Labib Georggi University of South Florida

The Location-Aware Information Systems Client (LAISYC) supports intelligent, real-
time, mobile applications for GPS-enabled mobile phones by dynamically adjusting
platform parameters for application performance while conserving device resources
such as battery life.

One of the most valuable pieces of contextual information for an intelligent mobile

application is the user’s location. Because of the complexity of realizing location-aware

capabilities for cellular devices, location-based intelligence is only now emerging in

commercial mobile phone applications. Several factors are contributing to the

renaissance of location-based services (LBS):

• Positioning technologies (such as high-sensitivity GPS) have improved accuracy

and time-to-first-fix even in obstructed indoor environments.

• Mass production of GPS hardware in mobile phone chipsets has reduced the

cost of embedded GPS hardware.

• The emergence of cross-platform application environments for mobile phones,

such as Java Micro Edition (Java ME).

Java ME provides standardized programmatic access to location data through the

JSR179 Location API and allows applications to run in the background (through a

multitasking virtual machine), both key requirements for widely deployable location-aware

applications. Because a device-based location API is critical for supporting real-time

location-aware mobile applications, third-party application developers must assume

responsibility for efficiently managing location data in a location-aware system. Unlike

other types of mobile applications, location-aware software often runs in the background

for extended periods of time to monitor the device’s real-time position. Because each

position calculation using embedded GPS hardware expends battery energy, as does

reporting this position to a server, battery life is a critical concern in mobile application

design for LBS. As a result, location-aware applications require intelligent client software

that conserves device battery energy while meeting application functionality

requirements that can vary dynamically during execution.

The Location-Aware Information Systems Client (LAISYC) is a comprehensive,

location- aware framework that supports intelligent and energy-efficient real-time

distributed applications for Java ME. Any third-party software developer can implement

LAISYC using standard IP-based networking protocols. The framework supports various

types of location- aware applications—from real-time tracking to more delay-tolerant

applications focused on recording accurate travel paths, or even hybrid applications with

real-time and delay-tolerant features—by dynamically manipulating parameters according

to real-time application needs. Because LAISYC’s design is modular, we can integrate

other work in client-side location intelligence. (See the “Related Work in Location-Based

Services” sidebar for how LAISYC differs from existing research in LBS.) We have

evaluated LAISYC by implementing it in several intelligent real-time mobile

applications, which are dis- cussed in the “Evaluation” section.LAISYC
communications Framework and components

LAISYC’s two-tiered communication protocol uses HTTP (or HTTPS, for

secure transfer) to transport all nonlocation information required for application execution

(application data), and UDP to transport location data.

HTTP supports application data transferred between the device and server

through a device-initiated request-response model similar to RPC. Integrated

development environments (such as Netbeans) provide tools that enable rapid

implementation of distributed functions using the HTTP POST method (that is, REST-ful

Web ser- vices), which would be time-consuming to manually implement using TCP. The

Java API for XML-based RPC (JAX- RPC), defined in the JSR172 Web Ser- vices API,

is avoided due to overhead in SOAP, an XML-based messaging protocol, and the

limited availability of JSR172 on commercially available mobile phones. The transfer of

un- necessary XML data reduces mobile device battery life, as we demonstrate later.

Related Work in Location-Based services
Although many location-based services (LBS) architectures are documented in literature, none includes a

comprehensive location-aware framework for intelligent, real-time applications for GPS-enabled mobile phones.

Following the E911 man- date, some publications targeted the implementation of core positioning technologies by

cellular carriers.1 The focus of academic works then turned to general LBS including emergency2 and commercial

services either tightly coupled to the cellular infrastructure or maintained by a centralized entity.3–5 These

architectures are of limited use to third-party mobile software developers because LBS functionality is tightly controlled

by the centralized entity, and the scope of location data use and system settings are limited. Other location-aware

architectures have focused on the Session Initiation Protocol (SIP), an application- layer protocol often used for

Voice over IP,6 but SIP is currently not widely supported in Java Micro Edition.

Our research focuses on an architecture that can be implemented in its entirety by third-party application

developers on most Java ME devices. The implementation of this architecture uses publicly available, standardized

APIs and doesn’t require programmatic interaction with a centralized system that controls all LBS for a cellular

network.

In previous work, we presented a general architecture in support of interactive, multimedia, location-based

mobile ap- plications.7 Our primary focus was the integration of location data into multimedia messaging service

(MMS) messages sent through a cellular carrier’s publicly accessible gateway. The Location-Aware Information

Systems Client (LAISYC) adds support for real-time, intelligent IP-based location-aware clients to this architecture. Our

work differs from the Mobile Millennium project by Nokia and the University of California, Berkeley,8 in that LAISYC

focuses on delivering personalized, real-time services to users based on their real-time locations and travel history. The

Mobile Millennium project focuses on collecting anonymous, aggregated GPS probe data from mobile phones as

they cross virtual trip lines on highways to estimate travel times and disseminate this information to the general

public.

References
1. Y. Zhao, “Standardization of Mobile Phone Positioning for 3G Systems,” IEEE Comm., vol. 40, no. 7, 2002, pp.

108–116.

2. M. Mintz-Habib et al., “A VoIP Emergency Services Architecture and Prototype,” Proc. 14th Int’l Conf. Computer

Comm. and Networks (ICCCN), IEEE Press, 2005, pp. 523–528.

3. M. Spanoudakis et al., “Extensible Platform for Location-Based Services Provisioning,” Proc. 3rd Int’l Workshop

Web and Wireless Geographical Information Systems (W2GIS 03), IEEE CS Press, 2003, pp. 72–79.

4. A. Kupper and C. Linnhoff-Popien, “TraX: A Device-Centric Middle- ware Framework for Location-Based

Services,” IEEE Comm., vol. 44, no. 9, Sept. 2006, pp. 114–120.

5. Y. Chen et al., “LORE: An Infrastructure to Support Location-Aware Services,” IBM J. Research and

Development, vol. 48, no. 5/6, 2004,

pp. 601–615.

6. Z. Shah, R. Malaney, and N. Dao, “An Architecture for Location Tracking Using SIP,” Proc. IEEE Global

Telecomm. Conf. (GLOBECOM 07), IEEE Press, 2007, pp. 124–128.

7. S. Barbeau et al., “A General Architecture in Support of Interactive, Multimedia, Location-based Mobile

Applications,” IEEE Comm., vol. 44, no. 11, 2006, pp. 156–163.

8. S. Amin et al., “Mobile Century-Using GPS Mobile Phones as Traffic Sensors: A Field Experiment,” Proc. 15th

World Congress on Intelligent Transportation Systems, ITS America, Nov. 2008.

Position estimation

Privacy filter

Location data signing

Location-aware application
(device side)

Critical
point

algorithm

Location

data
encryption

Adaptive
location
buffering

Position recalculation mgmt

Server

LAISYC positioning
systems management
LAISYC communications
management
Application data flow

Key
Control signals

Real-time phone-generated
location data flow
Real-time subscription
location data flow

Location data
flow control

Java ME platform

CLDC: Connected limited device configuration
MIDP: Mobile information device profile

HTTP or
HTTPS

TCP

UDP

Figure 1. The Location-Aware Information Systems Client (LAISYC) framework mobile phone-based modules conserve
device resources such as battery energy while meeting application functionality requirements that can vary dynamically
during execution. Location data is intelligently processed on the device before being sent to a server.

LAISYC uses UDP, which is commonly used for services where timeliness is

favored over reliability, to transport continuous location data updates from the mobile

phone to a server. Location updates can occur as frequently as once per second for

time- sensitive LBS, so a lightweight proto- col is required for system efficiency and

scalability, as well as to reduce the communication load on the mobile device’s limited

resources. Occasional messages from the server to the phone both confirm an open

connection and pass specific-location dataflow-control com- mands to the phone.

The various framework components reside either in the device or on the server to

support a complete distributed application.

Location API MIDP MIDP (persistent storage) MIDP (I/O)

CLDC CLDC (I/O)

Virtual machine

Se

ss
io

n
m

an
ag

em
en

t

Device-Side C omponents
LAISYC device-based components (Figure 1) are divided into two categories:

positioning systems management and communications management. The application

executes various types of controls, including activation and deactivation for all device-

side modules, based on its real-time needs.

Location data flow from the positioning system (such as GPS) on the mobile

device through the Location API (JSR179 or JSR293 in Java ME)

and then into the bottom layer of positioning systems management (that is, the position

recalculation management module). The location data are then propagated upward

through each module of positioning systems management until they reach the

application. If the application deactivates certain modules, the location data pass

through that module without the module modifying or acting on the data.

After location data are propagated through positioning systems management, the

application passes location data that are candidates for wireless transmission to the

critical point algorithm in communications management. The data then propagate until

they reach the session management module, which activates the location data’s

wireless transmission over UDP. The application also directly passes application data to

the session management module, which activates the transmission of this information

over HTTP.

All modules are translucent to the location-aware application, meaning that the

application can still directly access the underlying APIs if necessary, to access

functionality not controlled directly by the framework, but LAISYC is designed to help

alleviate the application from this responsibility for most major functionality.

Position recalculation management.
This module intelligently adjusts the frequency of position recalculations to save

battery energy when continuous device position calculations aren’t required.1 It realizes

significant energy savings by increasing the time interval between GPS fix attempts. For

example, if a mobile device is stationary for a long time, the interval between position

recalculations can gradually be in- creased to enter a sleep mode and pre- vent repeated

calculations of the same position information. The application can emerge from sleep

mode and snap back to rapid position recalculation when it determines that the device is

moving. This wake-up trigger can be based on the device’s speed exceeding a certain

threshold, or a certain distance between the most recent GPS fixes (that is, the distance

the user walked since the previous GPS fix). We use a state machine to gradually

progress from fully awake to fully asleep when LAI- SYC is unsure whether observed

motion is true movement or a result of GPS drift, thereby preventing LAISYC from

making large adjustments based on noisy outlier data. Embedded accelerometers, if

available, can also wake up this module.

The position recalculation management module has a secondary navigation

mode based on the distance to a goal (for example, the next turn for real-time driving

directions or a remote device’s location for real-time friend finders), which increases the

frequency of position calculations as the mobile device nears the goal.

Other intelligence to dynamically manage the selection between multiple

positioning technologies (for example, if no GPS signal exists) can also be

integrated here. For example, the PoSIM middleware can facilitate dynamic location-

technology switching at runtime based on rules created by the user at compile time.2

Position estimation.
Device-side soft- ware can fuse data from multiple technologies (Wi-Fi, cellular

signals, and so on) to estimate the device’s current position when location data from

primary positioning systems are unavailable. Although traditional dead reckoning relies

on accelerometers to estimate the device’s movement, the position estimation module

uses real-time and historical data to produce an intelligent estimate of the user’s real-

time position. For example, a computation- ally inexpensive probabilistic algorithm might

provide an intelligent guess at the phone’s current position based on past travel behavior

(such as time of day or travel patterns). This module is a candidate for different types of

research into intelligent, on-board, position estimation.

For example, Skyhook’s XPS hybrid positioning technology,3 used by

Apple’s iPhone, can be integrated into LAISYC’s modular design. Skyhook’s XPS

system synthesizes location data from GPS, Wi-Fi, and cellular radio broadcasts that

are sensed on the de- vice and then cross-referenced with a database of cell tower

and Wi-Fi locations.

Privacy filter.
The Java ME security model for the location API has only blanket options for

user approvals: allow this time, always allow, allow until exit, or never allow. Therefore,

users must permit all location requests by the application or they’re prompted each time

the location-aware application accesses device location. Instead of these extremes, it’s

desirable to let the user define conditional approvals based on preferences and device

location.

The privacy filter lets the application define conditional permissions for location

requests, such as time limitations (for example, requests permitted only during business

hours for business employees) or sensitive location restrictions (for example, no requests

allowed near privacy zones such as the user’s home). For extremely privacy-sensitive

applications, the filter is inverted to deny all location requests except those falling within

defined public areas (such as major interstates). Virtual trip lines, which trigger updates to

the server only at certain highway locations in the Mobile Millennium project, are one

example of this type of privacy filter.4

Location data signing.
Businesses and government agencies increasingly use GPS data to support key

operations (for example, mileage and time verification for workers, or confirmation of

duration and location of car use for pay-as-you-drive insurance and taxes). However,

these uses of GPS data have a key weakness: GPS data are falsifiable through

tampering and can’t be independently verified.

Location data signing uses asymmetric cryptography to digitally sign data related

to a GPS fix. These data can include the latitude, longitude, altitude, speed, GPS time

stamp, system time stamp, device phone number, and identifying information for the

phone and user to prove that a particular GPS fix occurred on a particular phone with a

specific user logged into the application, at a specific time. Be- cause this information is

hashed and signed by the application using a private key, the data’s integrity can be

verified using the public key and a hash of the message. Therefore, it can easily be

shown that a GPS fix is unaltered from the data originally calculated by a specific GPS-

enabled mobile phone application.

Although there will likely be some impact on device battery life, light- weight

cryptographic methods such as the elliptic-curve digital signature algorithm use small

key lengths, which translate to better performance. Additional experimentation is

necessary to quantify the impact of frequent location data signing on a mobile device.

Critical point algorithm.
Because GPS generates a large amount of location data, this data must be

carefully man- aged to avoid wasting resources (such as battery energy) by transferring

fixes to a server that might not contain useful information (for example, repeated GPS

fixes when the user is standing still or fixes lying on the same vector when the user is

traveling in a straight line). The user’s path can be accurately represented using only

small portions of GPS data generated by mobile phones.

The critical point algorithm (CPA) uses the change in direction between

sequential points as well as the user’s speed to filter noncritical points from a set of

GPS data, so only critical points representing the user’s path remain.1 LAISYC then

transfers these critical points to a server for storage and analysis. By prefiltering GPS

data before it leaves the device, CPA saves battery energy, reduces data transfer costs,

and saves network bandwidth. It also reduces the load on the server be- cause it

processes a fraction of the total GPS data generated by mobile devices. CPA also

contains several conditional evaluations that simulate other position update methods

including polling, periodic updates, and distance-based updates.

CPA is a variation of the perpendicular distance routine algorithm, which is an

accurate approximation of more complex line-simplification algorithms (for example,

Douglas-Peucker). CPA has O(n) complexity (where n is the number of GPS fixes) and

approximates the user’s travel path in real time as GPS data is generated, as opposed

to Douglas-Peucker’s O(n2) running time, which requires the entire point dataset before

beginning line simplification.5

CPA is also replicated on the server to filter data that hasn’t been prefiltered

onboard the device if real-time remote tracking is critical to the application.

Adaptive location data buffering.
Because UDP is used for efficient location data transport, no end-to-end

reliability (such as TCP) exists. In real- time tracking, the loss of occasional location

fixes is acceptable because another location update will soon follow. However, because

location data is often referenced after the fact to pro- vide metrics (such as distance

traveled) and reconstruct users’ paths, the loss of many contiguous fixes introduces

significant problems. Extended gaps can result from lack of support for simultaneous

voice and data services or no cellular signal.

Adaptive location data buffering increases the probability that most location data

points will arrive at the server. Before each location data UDP transmission, device-side

APIs are checked to assess the current level of cellular signal and determine if a

successful UDP transmission is probable. If not, the location data is buffered to either

main memory or persistent storage (for example, MIDP RecordStore). Once it’s detected

that UDP transmissions will likely succeed, the buffered data is sent via UDP and

deleted from the device.

Although this method increases the probability that the device will successfully

issue a UDP transmission, it doesn’t necessarily improve the chances that a UDP packet

that leaves the phone will be received by the server. Adaptive location data buffering

provides two methods to occasionally confirm an open end-to-end connection with the

server. If the device’s IP address is publicly addressable, the server can occasionally

send alive messages via single UDP packets to the phone. If, for security or capacity

reasons, the cellular provider doesn’t allow publicly addressable IPs, the adaptive lo-

cation data buffering module occasionally opens a TCP connection from the phone to

the server to determine if there is a successful alive response from the server. Using

either method, the phone will continue to transmit UDP data to the server as long as it

continues to receive alive messages from the server. If it doesn’t receive an alive

message (for example, if the phone is off network, the user is on a voice call, or the

server is down), the phone begins buffering location data until it receives the next alive

message.

Adaptive location data buffering is only intended to increase the probability that

most location data will arrive successfully at the server; it doesn’t guarantee location

data reliability. Therefore, the ratio between the number of location data transmissions

from the phone to the server via UDP and the number of alive messages received by the

phone from the server should be carefully balanced based on the application’s reliability

requirements.

Through our experiments, we’ve found that UDP is the preferred primary

transport protocol for location data, with adaptive location data buffering primarily

preventing large losses of contiguous location data due to atypical phone or network

conditions.

Location data encryption.
The interception of location data during transfer over the Internet is a significant

security threat to LBS. Although secure TCP connections are implemented within Java

ME through the Secure Sockets Layer (SSL), application developers must implement

secure UDP.

Location data encryption handles the encryption of location data in the UDP

datagram’s payload to enable end-to- end security between the mobile device and a

server. Symmetric encryption, which uses a shared key between two parties, is

generally more efficient than asymmetric encryption. Therefore, asymmetric encryption

using public and private keys can protect the initial shared key exchange using SSL and

HTTPS. Symmetric encryption can then be used to encrypt the subsequent location data

passed over UDP during the session.

The Advanced Encryption Standard (AES) appears preferable to RC4 as an

energy-efficient encryption algorithm for small data packets from laptop-based

experiments.6 However, future experimentation will determine whether these results are

transferrable to GPS-enabled mobile phones.

Session management— client-side application support.

This module is a client-side counterpart to the server-side session management

module, which maintains information (including cur- rent IP address) for each connected

device. Together, the client and server- side session management modules help the

mobile and server-side applications function together as one distributed application. The

Path
prediction

Critical
point

algorithm

Application server

Location-aware application
(server side)

Key
LAISYC communications
management

LAISYC data analysis

Application data flow

Control signals

Real-time phone-generated
location data flow
Real-time subscription
location data flow
Location data
flow control

Existing software solutions

Adaptive
location

data
buffering

(control only)

Mobile
device
proxy

controller

HTTP or
HTTPS

TCP
Relational
database

Mobile
phone(s) UDP

Spatial
database

client module initiates a session for a device by calling a createSession() Web method and

passing various authorizing information (such as username, password, and phone

number). The server responds with a unique session identifier that will let it match

future location data received over UDP and application-specific data received over

HTTP with a single session. To signal to the server that a session is finished, the module

initiates a destroySession() Web method.

Figure 2. The LAISYC framework server-based modules support the server-side portion of the distributed application to
maintain individual device sessions, access persistent relational and spatial database storage, predict the user’s real-time
path, and control location data flow between device and server.

 Se
ss

io
n

m
an

ag
em

en
t

The client session management module implicitly controls the creation and

destruction of sessions surrounding the transfer of application and location data to the

server and relieves the application from direct session management. For example, an

application using LAI- SYC can simply instruct the framework to send a GPS fix to the

server. This client-side module will then perform appropriate checks to ensure that a

session already exists, and if not, it will automatically initiate a session with the server via

HTTP and then send the data via UDP.

Server-Side Components
LAISYC’s server-side components (Figure 2) are divided into two categories:

communication management and location data analysis.

As with the device-side application, the server-side application asserts various control

signals to each component to activate or deactivate modules. The client device initiates

all application data communication to the server using the HTTP request-response

model. Information flow (that is, session requests, application-specific Web services,

and location data) coming into the server-side communication management enters

through the session management module and propagates directly up to the application.

The application can then initiate location data analysis by passing the location data into

the critical point algorithm, which propagates to the path prediction module. For

subscription services, the mobile device proxy controller module sends location data to

the device via UDP. The server-side application also interfaces with both traditional SQL

relational and spatial databases.

Session management—server-side application support.
A session identifier, passed to the device in response to a session creation request, links

multiple Web service calls over HTTP with location data sent via UDP and is included in

all subsequent device-initiated communication. LAISYC uses HTTPS to encrypt Web

service calls from the phone for secure services.

A limited amount of information for each session is kept in main memory inside the

application server to enable rapid response to the device based on incoming data. Although

extremely time-sensitive tasks (such as real-time navigation) must still be handled by

software on the mobile device, near-real-time modules that access large databases can be

realized on the server side. The disk-based database contains a record of all the users,

sessions, and location information, and serves as a back-up of information contained in the

application server memory. This module also automatically manages session expirations

to ensure efficient memory usage. For example, if no data has arrived from a particular

device after a certain amount of time, information for that session will be removed from

memory and marked as “expired” in the database. If a UDP packet arrives with a session

ID that doesn’t exist in memory, this module checks the database to see if an expired

session with that ID exists, and re- activates that session my moving it back into server

memory. Removing unused sessions from memory is an important performance feature

to avoid accumulating orphaned sessions as a result of device malfunction, including

power- off due to low battery levels during application execution.

25
JAX-RPC

20 HTTP-POST

15

10

5

0
4 15 30 60

Interval between wireless
transmissions (seconds)

Figure 3. Comparison of Java API for XML- based Remote Procedure Calls (JAX-RPC) and HTTP POST operations on battery life.
SOAP, an XML-based messaging protocol used in JAX-RPC, adds a significant amount of unnecessary XML overhead to
communications, which has a significant negative impact on battery life, as well as other device resources.

Mobile device proxy controller.
To sup- port mobile device subscriptions to the real-time location of other moving

entities (such as buses) during real-time cross-referencing LBS, the mobile device

proxy controller proactively forwards each location update for a moving entity directly to

the mobile device via UDP. This methodology avoids the latency and overhead of

repeated device-initiated HTTP re- quests to obtain the newest location information

from a server database. The mobile application subscribes and unsubscribes via HTTP

Web methods.

Path prediction.
Intelligent location- based services should be highly relevant and precisely

targeted to each user based on the user’s real-time position and predicted path. To let

users plan accordingly, location-based alerts (traffic accident notifications, advertising,

and so on) should be distributed to travelers before they reach the alert area.

Because human travel behavior is highly repetitive in both space and time, path

prediction uses spatial representations of a user’s historical trips along with their current

position to predict the paths they might take in the immediate future.7

This module uses a spatial database to perform a series of intersection queries

between the user’s real-time location/ path and the buffers surrounding the user’s

previously recorded paths. Each detected buffer represents a predicted path that the

user might follow. Additional spatial queries are then executed to discover alerts relevant

Ba
tte

ry
 li

fe
 (h

ou
rs

)

to the user’s predicted path and personal preferences.

Evaluation
Our research team has used LAISYC in several mobile applications, including

• Trac-It, a personal travel coach that both helps users reduce their “travel

footprint” by showing their travel history and providing travel suggestions as well

as real-time traffic alerts through personalized path prediction;8

• Travel Assistance Device (TAD), a real-time transit navigation application that

prompts transit riders to exit the bus at the proper stop and de- livers real-time,

estimated bus arrival times;9 and

• Tactical Local Area Network(TACLAN) Real-Time Location and Multimedia

Messaging System, a tactical LBS system for real-time battlefield tracking and

messaging between mobile devices and a centralized dispatch station.

These and other applications based on the LAISYC framework used Glassfish as the

Java application server, while Microsoft SQL Server and PostGIS served as the primary

relational and spatial databases, respectively. We used Netbeans to define Web services

using the Java API for Web Services (JAX- WS) 2.0. We also used Netbeans to

autogenerate the code stubs for the phone and server that implement HTTP POST

methods that mirror input and output of the JAX-WS. We implemented adaptive location

buffering using device- initiated TCP connections, because not all Sprint-Nextel phones

have public IP addresses.

To evaluate framework modules for energy efficiency, we created a battery life

benchmarking application that measures how long the phone battery lasts while

operations are repeated at fixed intervals (for example, GPS fixes and wireless

transmissions). By com- paring the resulting battery life from each execution, we can

determine each operation’s energy cost at different frequencies.

We demonstrated the efficiency of the HTTP POST implementation of Web services

on a Motorola i580 on Sprint- Nextel’s iDEN network (see Figure 3). At 60-second

transmission intervals, battery life when using HTTP POST is more than 24 hours and

only 19.3 hours using JAX-RPC. We found similar results at lower intervals, thus

justifying the choice of HTTP POST over JAX- RPC as the application-layer protocol in

LAISYC.

Position recalculation management provides significant energy benefits by

dynamically adjusting the JSR179 LocationListener position recalculation interval based

on whether the user is moving or stationary (see Figure 4). Testing with a Sanyo Pro200

on Sprint- Nextel’s code division multiple access (CDMA) EV-DO Rev. A network

shows that this module can extend battery life from 8 hours (4-second intervals) to more

than 14 hours at 30-second intervals, and upward of 41 hours at 300-second (5-minute)

intervals. The large jump in battery life between the 150-second and 300-second

measurements indicates that a hardware component in the phone (such as CPU or GPS)

can reach a low-power state when there are at least 300 seconds be- tween GPS fix

attempts. Because the hardware can spend more time in a low-power state

between GPS fix attempts, the battery life is ex- tended significantly at 300-second

intervals. Therefore, position recalculation management can save the most energy by

properly identifying when a user has stopped moving and quickly transition into large

intervals between GPS fix attempts.

Figure 5 demonstrates the energy benefits of the CPA. Increasing the interval

between UDP transmissions from 15 to 30 seconds extends battery life from

approximately 9 hours to more than 17 hours. Increasing the interval to 60 seconds

extends battery life to approximately 30 hours. Battery life is therefore directly

proportional to the length of transmission interval, meaning that less frequent wireless

transmissions significantly increase battery life. Energy levels shown on the y-axis of

Figure 5 refer to battery- level values recorded from the Sprint Extensions API by the

application during the experiment (where 4 indicates a full battery and 0 indicates no

power).

Because the benefits of using UDP (such as when timeliness and scalability are

critical) are well understood, we focus on evaluating the energy foot- prints of UDP and

TCP when transferring location data from the phone to better understand adaptive

location data buffering and the potential trade- offs between reliability and power

consumption.

To evaluate power consumption differences, we used an Agilent E3631A power

supply to measure the cur- rent drawn by a Sanyo 7050 phone while running our test

applications. Figure 6a shows the power consumption when the application is

transmitting location data at 4-second intervals during separate TCP and UDP tests.

The hardware is constantly active during both protocols, so there is a negligible energy

difference in using UDP versus TCP at 4-second transmission intervals. However, as

Figure 6b shows, with transmission intervals as low as 10 seconds, a clear energy

benefit becomes evident, as the red TCP graph shows current flow when UDP

(transparent blue graph) isn’t consuming any energy. The approximate energy used

during transmissions is 110 joules for UDP and 152 joules for TCP, yielding an average

energy use of ap- proximately 3.68 joules per transmission for UDP and 5.08 joules per

trans- mission for TCP. Applications can now determine if occasionally querying the

server to verify an end-to-end connection is worth the extra energy cost.

Because UDP is used to transport location data in a wireless environment, we

also evaluated the potential loss of location data between the device and server. In

extended testing performed with several Sanyo 7050s in Tampa, Florida, the server

received 45,525 (97.3 percent) of the phones’ 46,785 UDP transmissions. We performed

these tests using ideal communication scenarios(that is, in suburban areas outdoors

with adequate cellular signal coverage, with a server under a very light processing load,

and using test phones with no incoming or outgoing phone calls).

Adaptive location data buffering can increase the probability of success for UDP

transmissions during real-world use on phones that can’t support simultaneous voice

and data sessions, in rural or indoor areas with intermit- tent or sparse cellular

coverage, and with servers under greater processing loads.

Figure 4. Impact of GPS interval on battery life. By transitioning from small sampling intervals when the user is moving to
large sampling intervals when the user stops moving, the position recalculation management module can save significant
battery energy.

45
40
35
30
25
20
15
10
5
0

4 8 15 30 60 150 300
Interval between GPS

fixes (seconds)

Ba
tte

ry
 li

fe
 (h

ou
rs

)

Figure 5. Impact of wireless transmission interval on battery life. By only sending critical location points needed to
reconstruct a user’s path, and thus reducing the frequency of wireless transmissions, the critical point algorithm can save
significant battery energy and data transfer costs. For the battery levels, 4 is full, 3 is half full,
2 is low, 1 indicates a warning, and at 0, the device powers off.

Figure 6. Comparison of power consumption when transferring location data using TCP and UdP. (a) whereas at 4-second
transmission intervals, TCP and UdP have similar power consumption, (b) at 10-second transmission intervals, TCP
consumes approximately 38 percent more power than UdP.

We’re currently performing experiments with LAISYC framework components

on the Google Android platform, which has become the leading cross-platform

application environment for smart- phones. All LAISYC design principles discussed in

this article in the context of Java ME also apply to Android, with some changes in

terminology for certain platform features (such as SQLite for on-device persistent

storage, instead of the Java ME MIDP RecordStore). In fact, early experiments with

several Android devices indicate that the energy challenges discussed in this article are

even more significant on smartphones. For example, battery life when sampling GPS at

4-second intervals was approximately five hours on an HTC Hero with Android 2.1

4

3

2

1

0
4 5 10 15 20 25 30

Battery life (hours)

Interval 15 (seconds)
Interval 30 (seconds)
Interval 60 (seconds)

Ba
tte

ry
 e

ne
rg

y l
ev

el
s

(S
pr

in
t e

xt
en

sio
ns

 A
PI

)

update1, compared to eight hours on a Sanyo Pro 200 with Java ME. As a result, the

energy-efficient components in LAISYC become even more important on smartphones.

Smartphones also introduce additional capabilities and challenges when

compared with typical Java ME feature phones. Additional radios for Bluetooth, Wi-Fi,

and 4G communication all increase connectivity and positioning system options as well

as network speeds, but require intelligence to efficiently use each technology without

increasing the overall power consumption of the device and applications. Internal

accelerometers, gyroscopes, barometers, and magnetic compasses all provide

additional data to derive a user’s position and orientation, but additional intelligence is

required to transform the data into contextual information. Therefore, although

smartphones provide many new and exciting technologies, these devices also open

many new research areas for intelligent location-aware ap- plications.

Acknowledgement
This work was supported in part by the US National Science Foundation under grant

0754537 and the Florida and US Departments of Transportation through the National

Center for Transit Research under grants BD-549-35 (TRAC-IT Phase 3) and BD-549-

33 (TAD).

We acknowledge the Sprint Application Developer Program for providing mobile devices

and service, and Josh Kuhn for his assistance with the energy benchmarking tests.

Patents are pending on LAISYC modules by the University of South Florida, 2009.

References
1. S. Barbeau et al., “Dynamic Management of Real-Time Location Data on GPS-

Enabled Mobile Phones,” Proc. 2nd Int’l Conf. Mobile Ubiquitous Computing,

Systems, Services, and Technologies (UBICOMM 08), IEEE CS Press, 2008,

pp. 343–348.

2. P. Bellavista, A, Corradi, and C. Giannelli, “The PoSIM Middleware for Translucent

and Context-Aware Integrated Management of Heterogeneous Positioning Systems,”

Computer Comm., vol. 31, no. 6, 2008, pp. 1078–1090.

3. Skyhook Wireless, “XPS Overview,” 2008; www.skyhookwireless.com/

http://www.skyhookwireless.com/

howitworks.

4. S. Amin et al., “Mobile Century-Using GPS Mobile Phones as Traffic Sensors:

A Field Experiment,” Proc. 15th World Congress on Intelligent Transportation

Systems, ITS America, CD ROM, 2008.

5. W. Shi and C. Cheung. “Performance Evaluation of Line Simplification

Algorithms for Vector Generalization,” The Cartographic J., Mar. 2006, vol. 43, no. 1,

pp. 27–44.

6. P. Prasithsangaree and P. Krishnamurthy, “Analysis of Energy Consumption of RC4

and AES Algorithms in Wireless LANs,” Proc. IEEE Global Telecomm. Conf.

(GLOBECOM 03), vol. 3, IEEE Press, 2003, pp. 1445–1449.

7. N. Persad-Maharaj et al., “Real-Time Travel Path Prediction Using GPS-Enabled

Mobile Phones,” Proc. 15th World Congress on Intelligent Transporttion Systems,

ITS America, CD ROM, 2008.

8. S. Barbeau et al., “TRAC-IT: A Soft- ware Architecture Supporting Simultaneous

Travel Behavior Data Collection and Real-Time Location-Based Services for GPS-

Enabled Mobile Phones,” Proc. Nat’l Academy of Sciences’ Transportation

Research Board 88th Ann. Meeting, Transportation Research Board, 2009, paper

09-3175.

9. S. Barbeau et al., “The Travel Assistant Device: Utilizing GPS-Enabled Mobile

Phones to Aid Transit Riders with Special Needs,” Institution of Eng. and

Technology (IET) Intelligent Transportation Systems, vol. 4, no. 1, 2010,

pp. 12–23.

The Authors
Sean J. Barbeau is a research associate at the Center for Urban Transportation

Research, a founding faculty member of the Location-Aware Information Systems

Laboratory, and a PhD candidate in computer science, all at the University of South

Florida. His research interests include the design and evaluation of intelligent location-

based services and online communities for user- generated spatial data. Barbeau has

an MS in computer science from the University of South Florida. He is a member of the

IEEE Computer Society. Contact him at barbeau@cutr.usf.edu.

mailto:barbeau@cutr.usf.edu

Alfredo J. Perez is a PhD candidate in the Department of Computer Science and

Engineering at the University of South Florida. His research interests include mobile

sensor networks, location-based systems, evolutionary algorithms, and multi- objective

optimization. Perez has an MS in computer science from the University of South Florida.

He is a member of the IEEE Computational Intelligence Society and the Location-Aware

Information Systems Laboratory at USF. Contact him at ajperez4@cse. usf.edu.

Rafael A. Perez is a professor of computer science and engineering and associate

dean for academics in the College of Engineering at the University of South Florida. His

research interests include intelligent systems. Perez has a PhD in electrical engineering

from the University of Pittsburgh. Contact him at perez@cse.usf.edu.

Philip L. Winters is the Transportation Demand Management (TDM) Program Director

in the Center for Urban Transportation Research at the University of South Florida. His

research interests include TDM research, planning, operations, training, and evaluation.

Winters has a BS in civil engineering from Virginia Tech. Contact him at winters@cutr.

usf.edu.

Miguel A. Labrador is an associate professor in the Department of Computer Science

and Engineering at the University of South Florida. His research interests include

energy-efficient mechanisms for wireless sensor networks, and location-based services.

Labrador has a PhD in information science with a concentration in

telecommunications from the University of Pitts- burgh. He is a senior member of the

IEEE Communications Society and a member of the ACM SIGCOMM and SIGCSE, the

ASEE, and the Beta Phi Mu honor society. Contact him at labrador@ cse.usf.edu.

Nevine Labib Georggi is a senior research associate at the Center for Urban

Transportation Research at the University of South Florida. Her research interests

include the use of intelligent transportation systems (ITS) applications to collect travel

data, enhancing the transit rider experience, alcohol-related safety research,

mailto:perez@cse.usf.edu

transportation sur- vey design and analysis, and project development and

environmental studies. Georggi has an MS in civil engineering from the University of

South Florida. Contact her at georggi@cutr.usf.edu.

mailto:georggi@cutr.usf.edu

	A location-aware framework for intelligent real-time mobile applications
	Authors

	Server-Side Components
	Acknowledgement
	References

