383 research outputs found

    Horizontal Scroll Compressor for Refrigeration Applications

    Get PDF
    New efficiency regulations, as well as trends in applications of new low GWP refrigerants, force compressors to be re-designed, especially for A3 refrigerants, because of the regulatory limitations of the refrigerant charge. The paper addresses compressor design allowing for more efficient use of the refrigerant charge. An oil sump retains significant amount of refrigerant diluted in the oil. Elimination of the oil sump allows to use the limited refrigerant charge more effectively. Furthermore, it reduces the size of the compressor and simplifies the compressor structure. Another benefit of this type of compressor is its orientation flexibility-the same compressor can be installed vertically or horizontally. These design features are beneficial in close-coupled systems, as well as transport (truck/trailer) refrigeration systems. The sump-less design requires a revision of friction pairs in the compressor: radial bearings, thrust bearings, tip-tobase contact and others. Existing refrigeration compressors rely on the continuous oil flow for journal bearing lubrication, while the lubrication mechanism in the sump-less compressor relies on the oil mist. This design leverages the approach utilized in the automotive scroll compressors, but the requirements and conditions for the compressor operation and reliability are different. The paper discusses the major design steps and results of preliminary reliability and system tests with an experimental determination of the optimal oil charge

    The T2K Side Muon Range Detector

    Full text link
    The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference

    DELIVERABLE: D5.1 MONITORING AND VALIDATION STRATEGIES

    Get PDF
    This deliverable report will present the strategies developed for monitoring the case study demonstrations to be undertaken as part of WP4. The strategies presented will include both methods for quantitative validation, including data capture and relevant KPIs, and those catering for more qualitative evaluation using aspects such as contextual interviews, self-observations, and/or questionnaires.This work is part of the DR BOB Project. The DR-BOB Collaborative Project (Grant Agreement No. 696114) is co-funded by the European Commission, Information Society and Media Directorate-General, under the Horizon 2020 Programme (H2020)

    A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Full text link
    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements to text, and revised reference

    Search for extraterrestrial antineutrino sources with the KamLAND detector

    Get PDF
    We present the results of a search for extraterrestrial electron antineutrinos (νˉe\bar{\nu}_{e}'s) in the energy range 8.3MeV<Eνˉe<31.8MeV8.3 MeV < E_{\bar{\nu}_{e}} < 31.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most importantly neutral current atmospheric neutrino interactions, setting an upper limit on the probability of 8^{8}B solar νe\nu_{e}'s converting into νˉe\bar{\nu}_{e}'s at 5.3×1055.3 \times 10^{-5} (90% C.L.), if we assume an undistorted νˉe\bar{\nu}_{e} shape. This limit corresponds to a solar νˉe\bar{\nu}_{e} flux of 93cm2s193 cm^{-2} s^{-1} or an event rate of 1.6events(ktonyear)11.6 events (kton-year)^{-1} above the energy threshold (Eνˉe>8.3MeV)(E_{\bar{\nu}_{e}} > 8.3 MeV). The present data also allows us to set more stringent limits on the diffuse supernova neutrino flux and on the annihilation rates for light dark matter particles.Comment: 22 pages, 6 figure

    Measurement of the 8B Solar Neutrino Flux with the KamLAND Liquid Scintillator Detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.Comment: 6 pages, 3 figure

    Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State

    Full text link
    A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the dd\mu muonic molecule was performed using the experimental \mu CF installation TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled with deuterium at temperatures from 85 K to 800 K was exposed to the negative muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq 2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc
    corecore