201 research outputs found

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Particle simulation of lower hybrid wave propagation in fusion plasmas

    Full text link
    Global particle simulations of the lower hybrid (LH) waves have been carried out using fully kinetic ions and drift kinetic electrons with a realistic electron-to-ion mass ratio. The LH wave frequency, mode structure, and electron Landau damping from the electrostatic simulations agree very well with the analytic theory. Linear simulation of the propagation of a LH wave-packet in the toroidal geometry shows that the wave propagates faster in the high field side than the low field side, in agreement with a ray tracing calculation. This poloidal asymmetry arises from the non-conservation of the poloidal mode number due to the non-uniform magnetic field. In contrast, the poloidal mode number is conserved in the cylindrical geometry with the uniform magnetic field.Physics, Fluids & PlasmasPhysics, NuclearSCI(E)[email protected]

    TORBEAM 2.0, a paraxial beam tracing code for electron-cyclotron beams in fusion plasmas for extended physics applications

    Get PDF
    The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential equations. With respect to its original form, the code has undergone significant transformations and extensions, in terms of both the physical model and the spectrum of applications. The code has been rewritten in Fortran 90 and transformed into a library, which can be called from within different (not necessarily Fortran-based) workflows. The models for both absorption and current drive have been extended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation in electron–electron collisions and the contribution of more than one harmonic to current drive. The code can be run also for reflectometry applications, with relativistic corrections for the electron mass. Formulas that provide the coupling between the reflected beam and the receiver have been developed. Accelerated versions of the code are available, with the reduced physics goal of inferring the location of maximum absorption (including or not the total driven current) for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum and maximum magnetic field can be provided externally to speed up the calculation of full driven-current profiles. These can be employed in real-time control algorithms or for fast data analysis.</p

    Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation

    Get PDF
    The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion

    Overview of ASDEX Upgrade results

    Get PDF
    Recent results from the ASDEX Upgrade experimental campaigns 2001 and 2002 are presented. An improved understanding of energy and particle transport emerges in terms of a 'critical gradient' model for the temperature gradients. Coupling this to particle diffusion explains most of the observed behaviour of the density profiles, in particular, the finding that strong central heating reduces the tendency for density profile peaking. Internal transport barriers (ITBs) with electron and ion temperatures in excess of 20 keV (but not simultaneously) have been achieved. By shaping the plasma, a regime with small type II edge localized modes (ELMs) has been established. Here, the maximum power deposited on the target plates was greatly reduced at constant average power. Also, an increase of the ELM frequency by injection of shallow pellets was demonstrated. ELM free operation is possible in the quiescent H-mode regime previously found in DIII-D which has also been established on ASDEX Upgrade. Regarding stability, a regime with benign neoclassical tearing modes (NTMs) was found. During electron cyclotron current drive (ECCD) stabilization of NTMs, βN could be increased well above the usual onset level without a reappearance of the NTM. Electron cyclotron resonance heating and ECCD have also been used to control the sawtooth repetition frequency at a moderate fraction of the total heating power. The inner wall of the ASDEX Upgrade vessel has increasingly been covered with tungsten without causing detrimental effects on the plasma performance. Regarding scenario integration, a scenario with a large fraction of noninductively driven current (≥50%), but without ITB has been established. It combines improved confinement (τE/τITER98 ≈ 1.2) and stability (βN ≤ 3.5) at high Greenwald fraction (ne/nGW ≈ 0.85) in steady state and with type II ELMy edge and would offer the possibility for long pulses with high fusion power at reduced current in ITER

    Current ramps in tokamaks: from present experiments to ITER scenarios

    Get PDF
    In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from various tokamaks have been analysed by means of integrated modelling in view of determining relevant heat transport models for these operation phases. A set of empirical heat transport models for L-mode (namely, the Bohm-gyroBohm model and scaling based models with a specific fixed radial shape and energy confinement time factors of H(96-L) = 0.6 or H(IPB98) = 0.4) has been validated on a multi-machine experimental dataset for predicting the l(i) dynamics within +/- 0.15 accuracy during current ramp-up and ramp-down phases. Simulations using the Coppi-Tang or GLF23 models (applied up to the LCFS) overestimate or underestimate the internal inductance beyond this accuracy (more than +/- 0.2 discrepancy in some cases). The most accurate heat transport models are then applied to projections to ITER current ramp-up, focusing on the baseline inductive scenario (main heating plateau current of I(p) = 15 MA). These projections include a sensitivity study to various assumptions of the simulation. While the heat transport model is at the heart of such simulations (because of the intrinsic dependence of the plasma resistivity on electron temperature, among other parameters), more comprehensive simulations are required to test all operational aspects of the current ramp-up and ramp-down phases of ITER scenarios. Recent examples of such simulations, involving coupled core transport codes, free-boundary equilibrium solvers and a poloidal field (PF) systems controller are also described, focusing on ITER current ramp-down.</p
    corecore