4,789 research outputs found

    Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions

    Full text link
    We derive the energy levels associated with the even-parity wave functions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the boundary conditions at the origin. This problem calls the attention of the students to an inaccurate statement in quantum mechanics textbooks often found in the context of solution of the harmonic oscillator problem.Comment: 9 pages, 3 figure

    Dynamical polarizability of graphene beyond the Dirac cone approximation

    Get PDF
    We compute the dynamical polarizability of graphene beyond the usual Dirac cone approximation, integrating over the full Brillouin zone. We find deviations at ω=2t\hbar\omega=2t (tt the hopping parameter) which amount to a logarithmic singularity due to the van Hove singularity and derive an approximate analytical expression. Also at low energies, we find deviations from the results obtained from the Dirac cone approximation which manifest themselves in a peak spitting at arbitrary direction of the incoming wave vector \q. Consequences for the plasmon spectrum are discussed.Comment: 8 pages, 6 figure

    No directed fractal percolation in zero area

    Full text link
    We show that fractal (or "Mandelbrot") percolation in two dimensions produces a set containing no directed paths, when the set produced has zero area. This improves a similar result by the first author in the case of constant retention probabilities to the case of retention probabilities approaching 1

    Charge and Spin Transport in the One-dimensional Hubbard Model

    Full text link
    In this paper we study the charge and spin currents transported by the elementary excitations of the one-dimensional Hubbard model. The corresponding current spectra are obtained by both analytic methods and numerical solution of the Bethe-ansatz equations. For the case of half-filling, we find that the spin-triplet excitations carry spin but no charge, while charge η\eta-spin triplet excitations carry charge but no spin, and both spin-singlet and charge η\eta-spin-singlet excitations carry neither spin nor charge currents.Comment: 24 pages, 14 figure

    Inducing energy gaps in graphene monolayer and bilayer

    Full text link
    In this paper we propose a mechanism for the induction of energy gaps in the spectrum of graphene and its bilayer, when both these materials are covered with water and ammonia molecules. The energy gaps obtained are within the range 20-30 meV, values compatible to those found in experimental studies of graphene bilayer. We further show that the binding energies are large enough for the adsorption of the molecules to be maintained even at room temperature

    Minimal optimal generalized quantum measurements

    Get PDF
    Optimal and finite positive operator valued measurements on a finite number NN of identically prepared systems have been presented recently. With physical realization in mind we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N=7 and verify that they are minimal up to N=5. We finally propose an expression which gives the size of the minimal optimal measurements for arbitrary NN.Comment: 9 pages, Late

    An obstruction based approach to the Kochen-Specker theorem

    Full text link
    In [1] it was shown that the Kochen Specker theorem can be written in terms of the non-existence of global elements of a certain varying set over the partially ordered set of boolean subalgebras of projection operators on some Hilbert space. In this paper, we show how obstructions to the construction of such global elements arise, and how this provides a new way of looking at proofs of the theorem.Comment: 14 pages, 6 figure

    Speakable in Quantum Mechanics

    Get PDF
    At the 1927 Como conference Bohr spoke the now famous words "It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature." However, if the Copenhagen interpretation really holds on to this motto, why then is there this feeling of conflict when comparing it with realist interpretations? Surely what one can say about nature should in a certain sense be interpretation independent. In this paper I take Bohr's motto seriously and develop a quantum logic that avoids assuming any form of realism as much as possible. To illustrate the non-triviality of this motto a similar result is first derived for classical mechanics. It turns out that the logic for classical mechanics is a special case of the derived quantum logic. Finally, some hints are provided in how these logics are to be used in practical situations and I discuss how some realist interpretations relate to these logics
    corecore