152 research outputs found

    Cancer invasion: patterns and mechanisms

    Get PDF
    Cancer invasion and the ability of malignant tumor cells for directed migration and metastasis have remained a focus of research for many years. Numerous studies have confirmed the existence of two main patterns of cancer cell invasion: collective cell migration and individual cell migration, by which tumor cells overcome barriers of the extracellular matrix and spread into surrounding tissues. Each pattern of cell migration displays specific morphological features and the biochemical/molecular genetic mechanisms underlying cell migration. Two types of migrating tumor cells, mesenchymal (fibroblast-like) and amoeboid, are observed in each pattern of cancer cell invasion. This review describes the key differences between the variants of cancer cell migration, the role of epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and amoeboid- mesenchymal transitions, as well as the significance of different tumor factors and stromal molecules in tumor invasion. The data and facts collected are essential to the understanding of how the patterns of cancer cell invasion are related to cancer progression and therapy efficacy. Convincing evidence is provided that morphological manifestations of the invasion patterns are characterized by a variety of tissue (tumor) structures. The results of our own studies are presented to show the association of breast cancer progression with intratumoral morphological heterogeneity, which most likely reflects the types of cancer cell migration and results from different activities of cell adhesion molecules in tumor cells of distinct morphological structures

    Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Get PDF
    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety

    Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Get PDF
    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety

    Effect of small and radical surgical injury on the level of different populations of circulating tumor cells in the blood of breast cancer patients

    Get PDF
    Circulating tumor cells (CTCs) constitute a heterogeneous population. Some tumor cells are cancer stem cells (CSCs), while others are in the process of the epithelial-mesenchymal transition (EMT); however, most CTCs are neither stem cells nor in the EMT. This prospective study of 22 patients with nonspecific-type invasive carcinoma of the breast identified different populations of CTCs by flow cytometry in the blood of patients before biopsy, after biopsy and after surgical tumor removal without neoadjuvant chemotherapy. The results showed that minor surgical injury (biopsy) was accompanied by a significant increase in the blood levels of CTCs without signs of the EMT or stemness (Epcam+CD45-CD44-CD24-Ncadh-) and CTCs with signs of stemness and without signs of the EMT (Epcam+CD45-CD44+CD24-Ncadh-). Our results suggest that minor surgical injury to a tumor contributes to the release of CTCs into the bloodstream, including a population of stem cells

    Calcium phosphate coatings produced by radiofrequency magnetron sputtering method

    Get PDF
    Calcium phosphate coatings on titanium implants surface, produced by radio frequency (RF) magnetron sputtering method with hydroxyapatite solid target were investigated. It was found that produced coatings are calcium deficient compared to stoichiometric hydroxyapatite. The surface of the coatings is highly rough at the nanoscale and highly elastic. In vivo experiments on rats revealed that titanium implants with the calcium phosphate coatings do not cause negative tissue reaction after 6 months incubation period

    Биологические функции комплемента

    Get PDF
    One of the true basic resistance factors is complement. Main functions of it consist in bacterial lysis, bacterial opsonisation for phagocytosis. Alteration of lytic function for opsonic function depends upon macrophages. Complement functions at bacteriosis depend on phathogenesis features in infectious disease.Комплемент является одним из важнейших факторов резистентности организма. Система комплемента может принимать участие в различных эффекторных механизмах, прежде всего в лизисе (комплементарный киллинг) и опсонизации микроорганизмов. В переключении литической функции комплемента на опсоническую могут принимать участие макрофаги. Функции комплемента при бактериозах зависят от особенностей патогенеза инфекционного заболевания
    corecore