35,983 research outputs found
Killing vectors and anisotropy
We consider an action that can generate fluids with three unequal stresses
for metrics with a spacelike Killing vector. The parameters in the action are
directly related to the stress anisotropies. The field equations following from
the action are applied to an anisotropic cosmological expansion and an
extension of the Gott-Hiscock cosmic string
All-sky Relative Opacity Mapping Using Night Time Panoramic Images
An all-sky cloud monitoring system that generates relative opacity maps over
many of the world's premier astronomical observatories is described.
Photometric measurements of numerous background stars are combined with
simultaneous sky brightness measurements to differentiate thin clouds from sky
glow sources such as air glow and zodiacal light. The system takes a continuous
pipeline of all-sky images, and compares them to canonical images taken on
other nights at the same sidereal time. Data interpolation then yields
transmission maps covering almost the entire sky. An implementation of this
system is currently operating through the Night Sky Live network of CONCAM3s
located at Cerro Pachon (Chile), Mauna Kea (Hawaii), Haleakala (Hawaii), SALT
(South Africa) and the Canary Islands (Northwestern Africa).Comment: Accepted for publication in PAS
A Herschel Study of 24 micron-Selected AGNs and Their Host Galaxies
We present a sample of 290 24-micron-selected active galactic nuclei (AGNs)
mostly at z ~ 0.3 -- 2.5, within 5.2 square degrees distributed as 25' X 25'
fields around each of 30 galaxy clusters in the Local Cluster Substructure
Survey (LoCuSS). The sample is nearly complete to 1 mJy at 24 microns, and has
a rich multi-wavelength set of ancillary data; 162 are detected by Herschel. We
use spectral templates for AGNs, stellar populations, and infrared emission by
star forming galaxies to decompose the spectral energy distributions (SEDs) of
these AGNs and their host galaxies, and estimate their star formation rates
(SFRs), AGN luminosities, and host galaxy stellar masses. The set of templates
is relatively simple: a standard Type-1 quasar template; another for the
photospheric output of the stellar population; and a far infrared star-forming
template. For the Type-2 AGN SEDs, we substitute templates including internal
obscuration, and some Type-1 objects require a warm component (T > 50 K). The
individually Herschel- detected Type-1 AGNs and a subset of 17 Type-2 ones
typically have luminosities > 10^{45} ergs/s, and supermassive black holes of ~
3 X 10^8 Msun emitting at ~ 10% of the Eddington rate. We find them in about
twice the numbers of AGN identified in SDSS data in the same fields, i.e., they
represent typical high luminosity AGN, not an infrared-selected minority. These
AGNs and their host galaxies are studied further in an accompanying paper
The multi-thermal and multi-stranded nature of coronal rain
In this work, we analyse coordinated observations spanning chromospheric, TR
and coronal temperatures at very high resolution which reveal essential
characteristics of thermally unstable plasmas. Coronal rain is found to be a
highly multi-thermal phenomenon with a high degree of co-spatiality in the
multi-wavelength emission. EUV darkening and quasi-periodic intensity
variations are found to be strongly correlated to coronal rain showers.
Progressive cooling of coronal rain is observed, leading to a height dependence
of the emission. A fast-slow two-step catastrophic cooling progression is
found, which may reflect the transition to optically thick plasma states. The
intermittent and clumpy appearance of coronal rain at coronal heights becomes
more continuous and persistent at chromospheric heights just before impact,
mainly due to a funnel effect from the observed expansion of the magnetic
field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found,
in which TR to chromospheric temperature transition occurs at the lowest
detectable scales. The shape of the distribution of coronal rain widths is
found to be independent of temperature with peaks close to the resolution limit
of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase
of clump numbers at the coolest wavelengths and especially at higher
resolution, suggesting that the bulk of the rain distribution remains
undetected. Rain clumps appear organised in strands in both chromospheric and
TR temperatures, suggesting an important role of thermal instability in the
shaping of fundamental loop substructure. We further find structure reminiscent
of the MHD thermal mode. Rain core densities are estimated to vary between
2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass
fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the
chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages,
figures (and movies, but not included here). Accepted for publication in the
Astrophysical Journa
Correlation amplitude and entanglement entropy in random spin chains
Using strong-disorder renormalization group, numerical exact diagonalization,
and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ
spin-1/2 chain focusing on the long-length and ground-state behavior of the
average time-independent spin-spin correlation function C(l)=\upsilon
l^{-\eta}. In addition to the well-known universal (disorder-independent)
power-law exponent \eta=2, we find interesting universal features displayed by
the prefactor \upsilon=\upsilon_o/3, if l is odd, and \upsilon=\upsilon_e/3,
otherwise. Although \upsilon_o and \upsilon_e are nonuniversal (disorder
dependent) and distinct in magnitude, the combination \upsilon_o + \upsilon_e =
-1/4 is universal if C is computed along the symmetric (longitudinal) axis. The
origin of the nonuniversalities of the prefactors is discussed in the
renormalization-group framework where a solvable toy model is considered.
Moreover, we relate the average correlation function with the average
entanglement entropy, whose amplitude has been recently shown to be universal.
The nonuniversalities of the prefactors are shown to contribute only to surface
terms of the entropy. Finally, we discuss the experimental relevance of our
results by computing the structure factor whose scaling properties,
interestingly, depend on the correlation prefactors.Comment: v1: 16 pages, 15 figures; v2: 17 pages, improved discussions and
statistics, references added, published versio
Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets
Using a model of nonmagnetic impurity potential, we have examined the
behavior of planar vortex solutions in the classical two-dimensional XY
ferromagnets in the presence of a spin vacancy localized out of the vortex
core. Our results show that a spinless atom impurity gives rise to an effective
potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
Complete Genome Sequence of Xanthomonas arboricola pv. juglandis 417, a Copper-Resistant Strain Isolated from Juglans regia L.
Here, we report the complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from a blighted walnut fruit (Juglans regia L. cv. Chandler). The genome consists of a single chromosome (5,218 kb)
- …