664 research outputs found
The effect of phase transitions on the droplet size distribution in homogeneous isotropic turbulence
We investigate the dynamics of an ensemble of discrete aerosol droplets in a homogeneous, isotropic turbulent flow. Our focus is on the stationary distribution of droplet sizes that develops as a result of evaporation and condensation effects. For this purpose we simulate turbulence in a domain with periodic boundary conditions using pseudo-spectral discretization. We solve in addition equations for the temperature and for a scalar field, which represents the background humidity against which the size of the droplets evolves. We apply large-scale forcing of the velocity field to reach a statistically steady state. The droplets are transported by the turbulent field while exchanging heat and mass with the evolving temperature and humidity fields. In this Euler-Lagrange framework, we assume the droplets volume fraction to be sufficiently low to allow one-way coupling of the droplets and turbulence dynamics. The motion of the droplets is time-accurately tracked. The Stokes drag force is included in the equation of motion of the individual droplets. The responsiveness of the droplets to small turbulent scales is directly related to the size of the individual spherical droplets. We perform direct numerical simulation to ultimately obtain the probability density function of the evolving radius of the droplets at different points in time with characteristic heat and mass transfer parameters. We determine the gradual convergence of the distribution function to its statistically stationary state for forced homogeneous, isotropic turbulence
Human Clostridium difficile infection caused by a livestock-associated PCR ribotype 237 strain in Western Australia
Introduction:
Clostridium difficile infection (CDI) is a significant gastrointestinal disease in the developed world and increasingly recognised as a zoonotic infection. In North America and Europe, the PCR ribotype (RT) 078 strain of C. difficile is commonly found in production animals and as a cause of disease in humans although proof of transmission from animals is lacking. This strain is absent in Australian livestock. We report a case of human CDI caused by a strain of C. difficile belonging to known Australian livestock-associated RT 237.
Case presentation:
A young male was admitted for multiple trauma following a motor vehicle accident and placed on piperacillin/tazobactam for pneumonia. After 4 days of treatment, he developed symptoms of CDI, which was confirmed in the laboratory. His symptoms resolved after 6 days of intravenous metronidazole. The strain of C. difficile isolated was identified as RT 237, an unusual RT previously found in with several Western Australia piggeries.
Conclusion:
This case of CDI caused by an unusual livestock-associated C. difficile RT 237 supports the hypothesis of zoonotic transmission. The case highlights the potential of livestock to act as reservoir for C. difficile and the need for continued surveillance of CDI in both human and animal populations
Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies
The surface and electronic structure of MOCVD-grown layers of
Ga(0.92)In(0.08)N have been investigated by means of photoemission. An
additional feature at the valence band edge, which can be ascribed to the
presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface
was prepared by argon ion sputtering and annealing. Stability of chemical
composition of the investigated surface subjected to similar ion etching was
proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure
Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions
This investigation is devoted to the solutions of Einstein's field equations
for a circularly symmetric anisotropic fluid, with kinematic self-similarity of
the first kind, in -dimensional spacetimes. In the case where the radial
pressure vanishes, we show that there exists a solution of the equations that
represents the gravitational collapse of an anisotropic fluid, and this
collapse will eventually form a black hole, even when it is constituted by the
phantom energy.Comment: 10 page
Validation of an ear tag–based accelerometer system for detecting grazing behavior of dairy cows
peer-reviewedThe objective of the study was to develop a grazing algorithm for an ear tag–based accelerometer system (Smartbow GmbH, Weibern, Austria) and to validate the grazing algorithm with data from a noseband sensor. The ear tag has an acceleration sensor, a radio chip, and temperature sensor for calibration and it can monitor rumination and detect estrus and localization. To validate the ear tag, a noseband sensor (RumiWatch, Itin and Hoch GmbH, Liestal, Switzerland) was used. The noseband sensor detects pressure and acceleration patterns, and, with a software program specific to the noseband, pressure and acceleration patterns are used to classify data into eating, ruminating, drinking, and other activities. The study was conducted at the University of Minnesota West Central Research and Outreach Center (Morris, MN) and at Teagasc Animal and Grassland Research and Innovation Centre (Moorepark, Fermoy, Co. Cork, Ireland). During May and June 2017, observational data from Minnesota and Ireland were used to develop the grazing algorithm. During September 2018, data were collected by the ear tag and noseband sensor from 12 crossbred cows in Minnesota for a total of 248 h and from 9 Holstein-Friesian cows in Ireland for a total of 248 h. A 2-sided t-test was used to compare the percentage of grazing and nongrazing time recorded by the ear tag and the noseband sensor. Pearson correlations and concordance correlation coefficients (CCC) were used to evaluate associations between the ear tag and noseband sensor. The percentage of total grazing time recorded by the ear tag and by the noseband sensor was 37.0% [95% confidence interval (CI): 32.1 to 42.0] and 40.5% (95% CI: 35.5 to 45.6), respectively, in Minnesota, and 35.4% (95% CI: 30.6 to 40.2) and 36.9% (95% CI: 32.1 to 41.8), respectively, in Ireland. The ear tag and noseband sensor agreed strongly for monitoring grazing in Minnesota (r = 0.96; 95% CI: 0.94 to 0.97, CCC = 0.95) and in Ireland (r = 0.92; 95% CI: 0.90 to 0.94, CCC = 0.92). The results suggest that there is potential for the ear tag to be used on pasture-based dairy farms to support management decision-making
Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats
Based on nine microsatellite loci, the aim of this study was to appraise the genetic diversity of 42 cassava (Manihot esculenta) landraces from selected regions in Brazil, and examine how this variety is distributed according to origin in several municipalities in the states of Minas Gerais, São Paulo, Mato Grosso do Sul, Amazonas and Mato Grosso. High diversity values were found among the five above-mentioned regions, with 3.3 alleles per locus on an average, a high percentage of polymorphic loci varying from 88.8% to 100%, an average of 0.265 for observed heterozygosity and 0.570 for gene diversity. Most genetic diversity was concentrated within the regions themselves (HS = 0.52). Cluster analysis and principal component based scatter plotting showed greater similarity among landraces from São Paulo, Mato Grosso do Sul and Amazonas, whereas those from Minas Gerais were clustered into a sub-group within this group. The plants from Mato Grosso, mostly collected in the municipality of General Carneiro, provided the highest differentiation. The migration of human populations is one among the possible reasons for this closer resemblance or greater disparity among plants from the various regions
- …