705 research outputs found

    Novel submerged photocatalytic membrane reactor for treatment of olive mill wastewaters

    Get PDF
    POCI-01-0145-FEDER-007265A new hybrid photocatalytic membrane reactor that can easily be scaled-up was designed, assembled and used to test photocatalytic membranes developed using the sol–gel technique. Extremely high removals of total suspended solids, chemical oxygen demand, total organic carbon, phenolic and volatile compounds were obtained when the hybrid photocatalytic membrane reactor was used to treat olive mill wastewaters. The submerged photocatalytic membrane reactor proposed and the modified membranes represent a step forward towards the development of new advanced treatment technology able to cope with several water and wastewater contaminants.publishersversionpublishe

    Solvent-free process for the development of photocatalytic membranes

    Get PDF
    PTDC/EAM-AMB/30989/2017.This work described a new sustainable method for the fabrication of ceramic membranes with high photocatalytic activity, through a simple sol-gel route. The photocatalytic surfaces, prepared at low temperature and under solvent-free conditions, exhibited a narrow pore size distribution and homogeneity without cracks. These surfaces have shown a highly efficient and reproducible behavior for the degradation of methylene blue. Given their characterization results, the microfiltration photocatalytic membranes produced in this study using solvent-free conditions are expected to effectively retain microorganisms, such as bacteria and fungi that could then be inactivated by photocatalysis.publishe

    Chemical profiling of infusions and decoctions of Helichrysum italicum subsp picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis)

    Get PDF
    Several medicinal plants are currently used by the food industry as functional additives, for example botanical extracts in herbal drinks. Moreover, the scientific community has recently begun focusing on halophytes as sources of functional beverages. Helichrysum italicum subsp. picardii (everlasting) is an aromatic halophyte common in southern Europe frequently used as spice and in traditional medicine. In this context, this work explored for the first time H. italicum subsp. picardii as a potential source of innovative herbal beverages with potential health promoting properties. For that purpose, infusions and decoctions were prepared from roots, vegetative aerial-organs (stems and leaves) and flowers and evaluated for in vitro antioxidant and anti-diabetic activities. Samples were also assessed for toxicity in different mammalian cell lines and chemically characterized by spectrophotometric methods and ultra-high performance liquid chromatography photo diode array mass-spectrometry (UHPLC-PDA-MS). Results were expressed relating to 'a cup-of-tea' and compared with those obtained with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). Tisanes from the everlasting's above-ground organs, particularly flowers, have high polyphenolic content and several phenolics were identified; the main compounds were chlorogenic and quinic acids, dicaffeoylquinic-acid isomers and gnaphaliin-A. The antioxidant activity of beverages from the everlasting's above-ground organs matched or surpassed that of green tea and rooibos. Its anti-diabetic activity was moderate and toxicity low. Overall, our results suggest that the everlasting is a potential source of innovative and functional herbal beverages. (C) 2017 Elsevier B.V. All rights reserved.national funds through Foundation for Science and Technology (FCT, Portugal) [CCMAR/Multi/04326/2013]FCT [SFRH/BD/94407/2013, SFRH/BD/116604/2016]Research Foundation - Flanders (FWO) [12M8315N]FCT Investigator Programme [IF/00049/2012]info:eu-repo/semantics/publishedVersio

    Stability of polymeric membranes to UV exposure before and after coating with TiO2 nanoparticles

    Get PDF
    Acknowledgments: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Nº 2019/ 04319-9), Associate Laboratory for Green Chemistry—LAQV, Unidade de Tecnologia de Células Animais do iBET e à Paula Alves, iNOVA4Health—UIDB/Multi/04462/2020, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds is acknowledged. Funding from INTERFACE Program, through the Innovation, Technology and Circular Economy Fund (FITEC), is also gratefully acknowledged. Funding Information: Funding: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Nº 2019/04319-9), Associate Laboratory for Green Chemistry—LAQV (through projects UIDB/50006/2020 and UIDP/ 50006/2020), Fundação para a Ciência e a Tecnologia through the project PTDC/EAM-AMB/30989/2017, Unidade de Tecnologia de Células Animais do iBET, iNOVA4Health—UIDB/Multi/04462/2020. Funding Information: Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo (FAPESP, N? 2019/04319-9), Associate Laboratory for Green Chemistry?LAQV (through projects UIDB/50006/2020 and UIDP/ 50006/2020), Funda??o para a Ci?ncia e a Tecnologia through the project PTDC/EAM-AMB/30989/2017, Unidade de Tecnologia de C?lulas Animais do iBET, iNOVA4Health?UIDB/Multi/04462/2020. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol–gel coating with TiO2 nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO2 coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO2 and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.publishersversionpublishe

    Degradation of neonicotinoids and caffeine from surface water by photolysis

    Get PDF
    Funding Information: Publicly available datasets were analyzed in this study. This data can be obtained by contacting the corresponding author of the work at: [email protected] Acknowledgments: Financial support from Fundação para a Ciência e a Tecnologia through the project PTDC/EAM-AMB/30989/2017 is gratefully acknowledged. iNOVA4Health— UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnolo-gia/Ministério da Educação e Ciência through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is gratefully acknowledged. This work is also supported by the Associate Laboratory for Green Chemistry—LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020). Funding from the INTERFACE Programme, through the Innovation, Technology and Circular Economy Fund (FITEC), is gratefully acknowledged.Along with rapid social development, the use of insecticides and caffeine-containing products increases, a trend that is also reflected in the composition of surface waters. This study is focused on the phototreatment of a surface water containing three neonicotinoids (imidacloprid, thi-amethoxam, and clothianidin) and caffeine. Firstly, the radiation absorption of the target pollutants and the effect of the water matrix components were evaluated. It was observed that the maximum absorption peaks appear at wavelengths ranging from 246 to 274 nm, and that the water matrix did not affect the efficiency of the removal of the target pollutants. It was found that the insecticides were efficiently removed after a very short exposure to UV irradiation, while the addition of hydrogen peroxide was needed for an efficient caffeine depletion. The electrical energy per order was estimated, being the lowest energy required (9.5 kWh m−3 order−1) for the depletion of thiamethoxan by indirect photolysis, and a concentration of hydrogen peroxide of 5 mg dm−3. Finally, a prelimi-nary evaluation on the formation of by-products reveals that these compounds play a key role in the evolution of the ecotoxicity of the samples, and that the application of direct photolysis reduces the concentration of these intermediates.publishersversionpublishe

    Revalidation Technique on Landslide Susceptibility Modelling: An Approach to Local Level Disaster Risk Management in Kuala Lumpur, Malaysia

    Get PDF
    Landslide susceptibility modelling in tropical climates is hindered by incomplete inventory due to rapid development and natural processes that obliterate field evidence, making validation a challenge. Susceptibility modelling was conducted in Kuala Lumpur, Malaysia using a new spatial partitioning technique for cross-validation. This involved a series of two alternating east-west linear zones, where the first zone served as the training dataset and the second zone was the test dataset, and vice versa. The results show that the susceptibility models have good compatibility with the selected landslide conditioning factors and high predictive accuracy. The model with the highest area under curve (AUC) values (SRC = 0.92, PRC = 0.90) was submitted to the City Council of Kuala Lumpur for land use planning and development control. Rainfall-induced landslides are prominent within the study area, especially during the monsoon period. An extreme rainfall event in December 2021 that triggered 122 landslides provided an opportunity to conduct retrospective validation of the model; the high predictive capability (AUC of PRC = 0.93) was reaffirmed. The findings proved that retrospective validation is vital for landslide susceptibility modelling, especially where the inventory is not of the best quality. This is to encourage wider usage and acceptance among end users, especially decision-makers in cities, to support disaster risk management in a changing climate

    Occurrence, nanofiltration treatment and toxicity screening

    Get PDF
    Funding Information: This work was also funded by Fundação para a Ciência e Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior ( FCT / MCTES , Portugal) through national funds to iNOVA4Health (UIDB/04462/2020 and UIDP/04462/2020) and the Associate Laboratory LS4FUTURE (LA/P/0087/2020). Teresa I.A. Gouveia and Vanessa Jorge Pereira would like to thank the Portuguese Foundation for Science and Technology ( FCT ) for Ph.D. ( SFRH / BD /147301/2019) and CEECIND/02919/2018 grants, respectively. Funding Information: This research was financially supported by: (i) Project POCI-01-0145-FEDER-031297 (CytoStraTech)—funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT /MCTES; (ii) NORTE-01-0145-FEDER-000069 (Healthy Waters) co-funded by European Regional Development Fund ( ERDF ), through North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; (iii) UIDB/04750/2020 (EPIUnit) and LA/P/0064/2020 (ITR), funded by national funds through the FCT - Foundation for Science and Technology, I.P.; (iv) LA/P/0045/2020 (ALiCE), Base Fundings UIDB/00511/2020 and UIDP/00511/2020 (LEPABE) and UIDB/50020/2020 and UIDP/50020/2020 (LSRE- LCM ), funded by national funds through FCT / MCTES (PIDDAC). Publisher Copyright: © 2023 The AuthorsAntineoplastic drugs are pharmaceuticals that have been raising concerns among the scientific community due to: (i) their increasing prescription in the fight against the disease of the twentieth century (cancer); (ii) their recalcitrance to conventional wastewater treatments; (iii) their poor environmental biodegradability; and (iv) their potential risk to any eukaryotic organism. This emerges the urgency in finding solutions to mitigate the entrance and accumulation of these hazardous chemicals in the environment. Advanced oxidation processes (AOPs) have been taken into consideration to improve the degradation of antineoplastic drugs in wastewater treatment plants (WWTPs), but the formation of by-products that are more toxic or exhibit a different toxicity profile than the parent drug is frequently reported. This work evaluates the performance of a nanofiltration pilot unit, equipped with a Desal 5DK membrane, in the treatment of real WWTP effluents contaminated (without spiking) with eleven pharmaceuticals, five of which were never studied before. Average removals of 68 ± 23% were achieved for the eleven compounds, with decreasing risks from feed to permeate for aquatic organisms from receiving waterbodies (with the exception of cyclophosphamide, for which a high risk was estimated in the permeate). Aditionally, no significative impact on the growth and germination of three different seeds (Lepidium sativum, Sinapis alba, and Sorghum saccharatum) were determined for permeate matrix in comparison to the control.publishersversionpublishe

    Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis

    Get PDF
    Funding Information: This work was supported by European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (COMPETE) [HealthyAging2020 CENTRO-01-0145-FEDER-000012-N2323, POCI-01-0145-FEDER-016385, POCI-01-0145-FEDER-007440 to CNC.IBILI, POCI-01-0145-FEDER-007274 to i3S/INEB and NORTE-01-0145-FEDER-000012 to T.L.L.]; national funds through the Portuguese Foundation for Science and Technology (FCT) [PTDC/SAU-ORG/119296/2010, PTDC/ NEU-OSD/0312/2012, PESTC/ SAU/UI3282/2013-2014, MITP-TB/ECE/0013/ 2013, FCT-UID/NEU/04539/2013], PD/BD/52294/2013 to T.M.R.R., SFRH/ BD/85556/2012 (co-financed by QREN) to V.C.S]; Lisboa Portugal Regional Operational Programme (LISBOA 2020) and Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; and by INFARMED Autoridade Nacional do Medicamento e Produtos de Saúde, I.P. [FIS-FIS-2015-01_CCV_20150630-157]. Publisher Copyright: © 2017 The Author.Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.publishersversionpublishe

    Sustainable plant polyesters as substrates for optical gas sensors

    Get PDF
    UIDB/04378/2020 PTDC/BII-BIO/28878/2017 PTDC/SAU-SER/30388/2017 SFRH-BD-110467-2015The fast and non-invasive detection of odors and volatile organic compounds (VOCs) by gas sensors and electronic noses is a growing field of interest, mostly due to a large scope of potential applications. Additional drivers for the expansion of the field include the development of alternative and sustainable sensing materials. The discovery that isolated cross-linked polymeric structures of suberin spontaneously self-assemble as a film inspired us to develop new sensing composite materials consisting of suberin and a liquid crystal (LC). Due to their stimuli-responsive and optically active nature, liquid crystals are interesting probes in gas sensing. Herein, we report the isolation and the chemical characterization of two suberin types (from cork and from potato peels) resorting to analyses of gas chromatography–mass spectrometry (GC-MS), solution nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). The collected data highlighted their compositional and structural differences. Cork suberin showed a higher proportion of longer aliphatic constituents and is more esterified than potato suberin. Accordingly, when casted it formed films with larger surface irregularities and a higher C/O ratio. When either type of suberin was combined with the liquid crystal 5CB, the ensuing hybrid materials showed distinctive morphological and sensing properties towards a set of 12 VOCs (comprising heptane, hexane, chloroform, toluene, dichlormethane, diethylether, ethyl acetate, acetonitrile, acetone, ethanol, methanol, and acetic acid). The optical responses generated by the materials are reversible and reproducible, showing stability for 3 weeks. The individual VOC-sensing responses of the two hybrid materials are discussed taking as basis the chemistry of each suberin type. A support vector machines (SVM) algorithm based on the features of the optical responses was implemented to assess the VOC identification ability of the materials, revealing that the two distinct suberin-based sensors complement each other, since they selectively identify distinct VOCs or VOC groups. It is expected that such new environmentally-friendly gas sensing materials derived from natural diversity can be combined in arrays to enlarge selectivity and sensing capacity.publishersversionpublishe

    Innovation and access to technologies for sustainable development: diagnosing weaknesses and identifying interventions in the Transnational Arena

    Get PDF
    Sustainable development – improving human well-being across present generations without compromising the ability of future generations to meet their own needs – is a central challenge for the 21st century. Technological innovation can play an important role in moving society toward sustainable development. However, poor, marginalized, and future populations often do not fully benefit from innovation due to their lack of market or political power to influence innovation processes. As a result, current innovation systems fail to contribute as much as they might to meeting sustainable development goals. This paper focuses on how actors and institutions operating in the transnational arena can mitigate such shortfalls. To identify the most important transnational functions required to meet sustainable development needs our analysis undertook three main steps. First, we developed a framework to diagnose blockages in the global innovation system for particular technologies. This framework was built on existing theory and new empirical analysis. On the theory side, we drew from the literatures of systems dynamics; technology and sectoral innovation systems, science and technology studies, the economics of innovation, and global governance. On the empirical front, we conducted eighteen detailed case studies of technology innovation in multiple sectors relevant to sustainable development: water, energy, health, food, and manufactured goods. We use the framework to analyze our case studies in the common language of (1) technology stocks, (2) non-linear flows between stocks substantiated by specific mechanisms, and (3) characteristics of actors and socio-technical conditions (STCs) which mediate the flows between stocks . We identify blockages in the innovation system for each of the cases, diagnosing where in the innovation system flows were hindered and which specific sets of STCs and actor characteristics were associated with these blockages. Figure E.1 displays the components of our framework and how they relate
    corecore