69 research outputs found

    Geoscience of Climate and Energy 11. Ambient Air Quality and Linkage to Ecosystems in the Athabasca Oil Sands, Alberta

    Get PDF
    In 2010, there were 91 active oil sands projects in the Athabasca Oil Sands, Alberta where the Wood Buffalo Environmental Association monitors air quality and related environmental impacts. In 2012, ambient air concentrations of sulphur dioxide, nitrogen dioxide, and ammonia did not exceed the Alberta Ambient Air Quality Objectives. There was one exceedance of   these objectives for ground-level ozone, and 62 exceedances for fine particulate matter with aerodynamic diameter ≤ 2.5 microns. There were 170 exceedances of the 1-hour hydrogen sulphide / total reduced sulphur odour threshold. The number of hourly exceedances has decreased since 2009, yet odours remain a serious concern in some communities. Based on the Air Quality Health Index (ozone, nitrogen dioxide, fine particulate matter), the risk from ambient air quality to human health from some pollutants was calculated to be low 96% to 98% of the time depending upon monitoring location, moderate 1% to 3.4%, high ≤ 0.4%, and very high ≤ 0.2% of the year. In a highly regulated setting like the Alberta oil sands, it is critical for stakeholders to quantify the spatial influences of emission source types to explain  any consequential environmental effects. Source apportionment studies successfully matched source chemical fingerprints with those measured in terrestrial lichens throughout the region. Forensic receptor modeling showed source types contributing to elemental concentrations in the lichens included combustion processes (~23%), tailing sand (~19%), haul roads and limestone (~15%), oil sand and processed materials (~15%), and a general anthropogenic urban source (~15%). Re-suspended fugitive dust from operations, tailings dikes, quarrying, on-road transportation, and land clearing was found to contribute enrichment to a much greater degree than the hitherto assumed combustion source type.SOMMAIREEn 2010, il y avait 91 projets d’extraction en cours dans les sables bitumineux de l’Athabasca en Alberta, soit dans le secteur où la Wood Buffalo Environmental Association mesure la qualité de l'air et les répercussions sur les milieux de vie.  En 2012, les concentrations dans l'air ambiant de dioxyde de soufre, le dioxyde d'azote et d'ammoniac n’ont pas dépassé les niveaux fixés par l’Alberta Ambient Air Quality Objectives.  Il y a eu 1 dépassement de ces objectifs pour la concentration de l'ozone au niveau du sol, et 62 dépassements pour la concentration des particules fines d'un diamètre aérodynamique ≤ 2,5 micromètres.  Il y a eu 170 dépassements pour la concentration du sulfure d’hydrogène pendant 1 heure / du seuil de l’odeur total de soufre réduit.  Le nombre des dépassements horaires a diminué depuis 2009, mais les odeurs demeurent un grave problème dans certaines communautés.  En fonction de la Cote air santé (ozone, dioxyde d'azote, particules fines), le risque de la qualité de l'air ambiant pour la santé humaine de certains polluants a été qualifiée de faible pour 96 % à 98 % des cas selon lieu de la mesure, de modérée dans 1 % à 3,4 %, plus élevé dans ≤ 0,4% des cas, et de très élevé dans ≤ 0,2% de l’année.  Dans un cadre très réglementé comme celui des sables bitumineux de l'Alberta, il est essentiel pour les parties prenantes de quantifier spatialement les répercussions des divers types de sources d'émissions dans le but d’expliquer les conséquences sur les milieux de vie.  Les études d’attribution des sources ont très bien recoupé celles des empreintes chimiques des sources mesurées dans les lichens terrestres dans toute la région.  La modélisation par récepteurs forensiques a montré que les types de sources qui contribuent aux concentrations élémentaires dans les lichens proviennent des procédés de combustion (~ 23%), des sables résiduels (~ 19%), des routes de transport et du calcaire (~ 15%), des sables bitumineux et des matériaux transformés (~ 15%) et d’une source urbaine anthropique générale (~ 15%).  On a établi que les poussières diffuses remises en suspension provenant de l'exploitation, les digues de résidus, les carrières, le transport routier et le défrichement contribuent à l’augmentation de la concentration à un degré beaucoup plus élevé que la combustion, qu’on ne l’avait estimé jusqu’à présent.DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    Tropospheric O 3 moderates responses of temperate hardwood forests to elevated CO 2 : a synthesis of molecular to ecosystem results from the Aspen FACE project

    Full text link
    1.   The impacts of elevated atmospheric CO 2 and/or O 3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O 3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera , and the determinate, late successional, O 3 -tolerant species Sugar Maple, Acer saccharum ). 2.   The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O 3 -tolerant as well as O 3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34–36 nL L −1 during the summer daylight hours), O 3 offsets or moderates the responses induced by elevated CO 2 . 3.   After 3 years of exposure to 560 µmol mol −1 CO 2 , the above-ground volume of Aspen stands was 40% above those grown at ambient CO 2 , and there was no indication of a diminishing growth trend. In contrast, O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO 2 , and global models of forest productivity and climate change are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72125/1/j.1365-2435.2003.00733.x.pd

    Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well

    Get PDF
    A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpF–atpH, and psbK–psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85–100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbK–psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69–71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Forest health monitoring: criteria and indicators.

    No full text

    DNA damage in Populus tremuloides clones exposed to elevated O \u3c inf\u3e 3

    No full text
    The effects of elevated concentrations of atmospheric tropospheric ozone (O3) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO2) were examined. Growing season mean hourly O3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O3 concentrations were 79 and 89 ppb, respectively. Elevated CO2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O3 and CO2 in combination with O3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O3 tolerance or sensitivity. Crown Copyright © 2009

    Using tree cores to evaluate historic atmospheric concentrations and trends of polycyclic aromatic compounds in the Oil Sands region of Alberta, Canada

    No full text
    Tree cores and bark were sampled from jack pine trees at 18 sites in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada, to investigate spatial and temporal trends of polycyclic aromatic compounds (PACs). Spatial trends were investigated in the bark samples, where ΣPAC concentrations ranged from 75 to 3615 ng/g. Highest concentrations were observed from trees within 40 km of the nearest mining or upgrading facility perimeter fence, in line with previous deposition studies in the AOSR. The sampled tree cores were separated into segments representing 5 years of growth/atmospheric collection by counting tree rings. A significant increase in PAC concentrations over the lifetime of the tree was observed at sites with the highest PAC concentrations, and the average % increase in concentration from 1970 to 2015 was in line with average % growth in bitumen extraction in the AOSR. Finally, the concentrations in the tree core segments representing collection from 2010 to 2015 were converted into an atmospheric PAC concentration using previously published wood-air partition coefficients. The calculated atmospheric concentrations were within the same range as concentrations reported from the passive atmospheric sampling network in this region. The importance of site location is highlighted, with forest edge sites providing an improved comparison for atmospheric exposure and deposition. This is the first study to use tree cores to calculate an atmospheric concentration of PACs, demonstrating the applicability of this methodology for providing historic atmospheric data
    corecore