62 research outputs found

    On Di\'osi-Penrose criterion of gravity-induced quantum collapse

    Full text link
    It is shown that the Di\'osi-Penrose criterion of gravity-induced quantum collapse may be inconsistent with the discreteness of space-time, which is generally considered as an indispensable element in a complete theory of quantum gravity. Moreover, the analysis also suggests that the discreteness of space-time may result in rapider collapse of the superposition of energy eigenstates than required by the Di\'osi-Penrose criterion.Comment: 5 pages, no figure

    Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schr\"odinger Equation

    Get PDF
    We generalize the Weisskopf-Wigner theory for the line shape and transition rates of decaying states to the case of the energy-driven stochastic Schr\"odinger equation that has been used as a phenomenology for state vector reduction. Within the standard approximations used in the Weisskopf-Wigner analysis, and assuming that the perturbing potential inducing the decay has vanishing matrix elements within the degenerate manifold containing the decaying state, the stochastic Schr\"odinger equation linearizes. Solving the linearized equations, we find no change from the standard analysis in the line shape or the transition rate per unit time. The only effect of the stochastic terms is to alter the early time transient behavior of the decay, in a way that eliminates the quantum Zeno effect. We apply our results to estimate experimental bounds on the parameter governing the stochastic effects.Comment: 29 pages in RevTeX, Added Note, references adde

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Quantum phase transition in the Frenkel-Kontorova chain: from pinned instanton glass to sliding phonon gas

    Full text link
    We study analytically and numerically the one-dimensional quantum Frenkel-Kontorova chain in the regime when the classical model is located in the pinned phase characterized by the gaped phonon excitations and devil's staircase. By extensive quantum Monte Carlo simulations we show that for the effective Planck constant \hbar smaller than the critical value c\hbar_c the quantum chain is in the pinned instanton glass phase. In this phase the elementary excitations have two branches: phonons, separated from zero energy by a finite gap, and instantons which have an exponentially small excitation energy. At =c\hbar=\hbar_c the quantum phase transition takes place and for >c\hbar>\hbar_c the pinned instanton glass is transformed into the sliding phonon gas with gapless phonon excitations. This transition is accompanied by the divergence of the spatial correlation length and appearence of sliding modes at >c\hbar>\hbar_c.Comment: revtex 16 pages, 18 figure

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    A Person-Centered Approach to Poststroke Care: The COMprehensive Post-Acute Stroke Services Model

    Get PDF
    Many individuals who have had a stroke leave the hospital without postacute care services in place. Despite high risks of complications and readmission, there is no standard in the United States for postacute stroke care after discharge home. We describe the rationale and methods for the development of the COMprehensive Post-Acute Stroke Services (COMPASS) care model and the structure and quality metrics used for implementation. COMPASS, an innovative, comprehensive extension of the TRAnsition Coaching for Stroke (TRACS) program, is a clinician-led quality improvement model providing early supported discharge and transitional care for individuals who have had a stroke and have been discharged home. The effectiveness of the COMPASS model is being assessed in a cluster-randomized pragmatic trial in 41 sites across North Carolina, with a recruitment goal of 6,000 participants. The COMPASS model is evidence based, person centered, and stakeholder driven. It involves identification and education of eligible individuals in the hospital; telephone follow-up 2, 30, and 60 days after discharge; and a clinic visit within 14 days conducted by a nurse and advanced practice provider. Patient and caregiver self-reported assessments of functional and social determinants of health are captured during the clinic visit using a web-based application. Embedded algorithms immediately construct an individualized care plan. The COMPASS model's pragmatic design and quality metrics may support measurable best practices for postacute stroke care

    Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background

    Full text link
    We study cosmological perturbations in generalized Einstein scenarios and show the equivalence of inflationary observables both in the Jordan frame and the Einstein frame. In particular the consistency relation relating the tensor-to-scalar ratio with the spectral index of tensor perturbations coincides with the one in Einstein gravity, which leads to the same likelihood results in terms of inflationary observables. We apply this formalism to nonminimally coupled chaotic inflationary scenarios with potential V=cϕpV=c\phi^p and place constraints on the strength of nonminimal couplings using a compilation of latest observational data. In the case of the quadratic potential (p=2p=2), the nonminimal coupling is constrained to be ξ>7.0×103\xi>-7.0 \times 10^{-3} for negative ξ\xi from the 1σ1\sigma observational contour bound. Although the quartic potential (p=4p=4) is under a strong observational pressure for ξ=0\xi=0, this property is relaxed by taking into account negative nonminimal couplings. We find that inflationary observables are within the 1σ1\sigma contour bound as long as ξ<1.7×103\xi<-1.7 \times 10^{-3}. We also show that the p6p \ge 6 cases are disfavoured even in the presence of nonminimal couplings.Comment: 16 pages, 4 eps figure

    The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering

    Get PDF
    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with CMB and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy clustering (2dF) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.024+/-0.003, and a hint of reionization around z~8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises sigma8 significantly and forces other parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this sigma8 problem. We also comment on the disturbing fact that many recent analyses (including this one) obtain error bars smaller than the Fisher matrix bound. We produce a CMB power spectrum combining all existing experiments, and using it for a "MAP versus world" comparison next month will provide a powerful test of how realistic the error estimates have been in the cosmology community.Comment: Added references and Fisher error discussion. Combined CMB data, window and covariance matrix for January "MAP vs World" contest at http://www.hep.upenn.edu/~max/cmblsslens.html or from [email protected]
    corecore