62 research outputs found

    Thermodynamic length in open quantum systems

    Get PDF
    The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how to generalize this approach to open quantum systems by finding the thermodynamic metric associated to a given Lindblad master equation. The obtained metric can be understood as a perturbation over the background geometry of equilibrium Gibbs states, which is induced by the Kubo-Mori-Bogoliubov (KMB) inner product. We illustrate this construction on two paradigmatic examples: an Ising chain and a two-level system interacting with a bosonic bath with different spectral densities.Comment: 22 pages, 3 figures. v5: minor corrections, accepted in Quantu

    Finite-time Landauer principle at strong coupling

    Full text link
    Landauer's principle gives a fundamental limit to the thermodynamic cost of erasing information. Its saturation requires a reversible isothermal process, and hence infinite time. We develop a finite-time version of Landauer's principle for a bit encoded in the occupation of a single fermionic mode, which can be strongly coupled to a reservoir. By solving the exact non-equilibrium dynamics, we optimize erasure processes (taking both the fermion's energy and system-bath coupling as control parameters) in the slow driving regime through a geometric approach to thermodynamics. We find analytic expressions for the thermodynamic metric and geodesic equations, which can be solved numerically. Their solution yields optimal processes that allow us to characterize a finite-time correction to Landauer's bound, fully taking into account non-markovian and strong coupling effects.Comment: Main text: 5 pages, 1 figure. Whole document: 24 pages, 7 figure

    Critical quantum metrology assisted by real-time feedback control

    Full text link
    We investigate critical quantum metrology,that is the estimation of parameters in many-body systems close to a quantum critical point, through the lens of Bayesian inference theory. We first derive a no-go result stating that any non-adaptive measurement strategy will fail to exploit quantum critical enhancement (i.e. precision beyond the shot-noise limit) for a sufficiently large number of particles NN whenever our prior knowledge is limited. We then consider different adaptive strategies that can overcome this no-go result, and illustrate their performance in the estimation of (i) a magnetic field using a probe of 1D spin Ising chain and (ii) the coupling strength in a Bose-Hubbard square lattice. Our results show that adaptive strategies with real-time feedback control can achieve sub-shot noise scaling even with few measurements and substantial prior uncertainty.Comment: 6+5 pages, 3+5 figure

    Differential Evolution for Many-Particle Adaptive Quantum Metrology

    Get PDF
    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2

    Quantum Thermal Machine as a Thermometer

    Full text link
    We propose the use of a quantum thermal machine for low-temperature thermometry. A hot thermal reservoir coupled to the machine allows for simultaneously cooling the sample while determining its temperature without knowing the model-dependent coupling constants. In its most simple form, the proposed scheme works for all thermal machines which perform at Otto efficiency and can reach Carnot efficiency. We consider a circuit QED implementation which allows for precise thermometry down to ∌\sim15 mK with realistic parameters. Based on the quantum Fisher information, this is close to the optimal achievable performance. This implementation demonstrates that our proposal is particularly promising in systems where thermalization between different components of an experimental setup cannot be guaranteed.Comment: Main text: 5 pages, 4 figures; Supplement: 5 page

    Imperfect Thermalizations Allow for Optimal Thermodynamic Processes

    Full text link
    Optimal (reversible) processes in thermodynamics can be modelled as step-by-step processes, where the system is successively thermalized with respect to different Hamiltonians by an external thermal bath. However, in practice interactions between system and thermal bath will take finite time, and precise control of their interaction is usually out of reach. Motivated by this observation, we consider finite-time and uncontrolled operations between system and bath, which result in thermalizations that are only partial in each step. We show that optimal processes can still be achieved for any non-trivial partial thermalizations at the price of increasing the number of operations, and characterise the corresponding tradeoff. We focus on work extraction protocols and show our results in two different frameworks: A collision model and a model where the Hamiltonian of the working system is controlled over time and the system can be brought into contact with a heat bath. Our results show that optimal processes are robust to noise and imperfections in small quantum systems, and can be achieved by a large set of interactions between system and bath.Comment: 12 pages + appendix; extended results; accepted in Quantu
    • 

    corecore