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We devise powerful algorithms based on differential evolution for adaptive many-particle quantum

metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are

orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based

on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-

enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the

unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized

experimentally.
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Quantum-enhanced metrology (QEM) aims to achieve
single-shot parameter estimation for Hamiltonian-generated
evolution of N particles with a degree of imprecision �N

(e.g., standard deviation) exceeding the semiclassical limit
(or ‘‘standard quantum limit’’). This limit is due to particle
partition noise (vacuum fluctuations) [1] and ultimately
restricts the precision of clocks [2], gravitational wave
detection [3], and adaptive Hamiltonian identification [4].
Mathematically, �N 2 OðN�}Þ with N the number of par-
ticles in the probe ‘‘pulse’’ (our term for a collection of
particles, e.g., photons) and } ¼ 1=2 (} ¼ 1) in the semi-
classical (ultimate) precision limit [5–7]. The objective of
single-shot QEM is to attain precision exceeding } ¼ 1=2
and reaching as close as possible to } ¼ 1 for a single
‘‘pulse,’’ as opposed to tomography where many ‘‘pulses’’
could beused. TwocommonQEMstrategies inject quantum-
resource-laden (e.g., entangled) input states (i) followed by
multiparticle joint measurement or (ii) our focus: adaptive
QEM (AQEM), which employs only local measurements
each followed by optimal control of system parameters
in order to extract maximal information about unknown
parameters [8].

Finding effective adaptive-feedbackprocedures (knownas
‘‘policies’’ in machine learning) is typically intractable but
facilitated by decision-tree learning [9,10]. Here we report
three major new advances in AQEM enabled via our intro-
duction of differential-evolution (DE) [11] decision-tree
learning to AQEM: (a) surpassing the few-dozen-particle
limit in previous interferometric-phase-estimation studies
[9,10] explained and depicted in Fig. 1; (b) advancing
beyond the binary decision tree for quantum-walk coin-
bias parameter estimation; and (c) showing how our learning
algorithm can be used in optical quantum experiments with
current technology [12]. We introduce DE as a tool for
AQEM because of its known superiority over the particle
swarm optimization (PSO) machine-learning algorithm [13]

for many optimization problems, especially for high-
dimensional search spaces [14,15], hence appropriate for
AQEM. (We immediately see an ambiguity of terminology:
the particle traversing the interferometer is different from the
machine-learning particle, which is a test function in a search
space. As particle is a common term in both quantumphysics
and machine learning, wewill use the term in both ways and
make the term clear through context.) Whereas previous
work [9,10] demonstrated that swarm (collection of parti-
cles) intelligence yields AQEM algorithms superior to algo-
rithms so far devised by sentient beings (i.e., humans), our
use of an evolutionary algorithm here goes beyond an in-
principle demonstration of artificial intelligence for AQEM
towards a realistic approach to devising algorithms formany-
particle systems.
PSO is inspired by a social-behavior model comprising

� individual ‘‘particles’’ stochastically searching a vector
space punctuated by� iterations of mutual communication
and collective-intelligence decisions to circumvent local-
minima traps. The PSOAQEM algorithm employs a highly
effective logarithmic-search heuristic to devise policies for

FIG. 1 (color online). A set of (possibly entangled) particles,
solid (red) circles on the left-hand side, are injected into a system
with unknown parameter �. Information from sequential mea-
surements on each outgoing particle, faded (red) circle on the
right-hand side, is fed to a processing unit (PU) to modify a
control parameter � to enhance the precision of estimating �.
Machine learning is used on training sets to find a suitable
decision-tree-based algorithm for the PU so that single-shot
estimates of � beat the semiclassical measurement limit.
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single-shot AQEM interferometric phase estimation [9,10].
Here a policy is defined to be a procedure that an ‘‘agent,’’
representing the feedback loop, adopts given a set of
measurement results for a subset of particles in the output
pulse. A good policy, namely, a policy that beats the
semiclassical measurement limit, was previously obtained
with a computational-space overhead OðNÞ accompanied
by a run-time cost OðN6Þ [10]. Here we show that this
aforementioned PSO-based algorithm breaks down for just
dozens of particles, but we remedy this limitation here by
switching the learning algorithm from PSO to DE (which
we show dramatically speeds up the simulation run time)
but pay a time-cost slight penalty, namely OðN7Þ instead
of the previous OðN6Þ, thereby surpassing the previous
maximum-number-of-particles barrier to devising policies.

Our employment of a DE AQEM algorithm also enables
us to go beyond the restrictive binary-outcome measure-
ment model for two-output-port interferometry. We intro-
duce an example of a single-shot AQEM problem with a
higher number of possible measurement outcomes hence a
larger d-ary tree. Specifically we now solve the harder case
of a discrete-time quantum walk with N walkers (effec-
tively a ‘‘pulse’’ of walkers) and a quantum-coin operator
that has an unknown bias. The AQEM objective is to
ascertain the quantum coin’s bias with an imprecision
that scales better than semiclassical limit } ¼ 1=2. As a
position measurement of the walker at time t yields an
outcome in f�t; . . . ; tg, the resultant decision tree is d-ary
for d ¼ 2tþ 1. Our strategy is to replace the d / t tree
by a quaternary (d ¼ 4) decision tree and show the effec-
tiveness of DE for finding a policy that beats the semiclas-
sical limit. Furthermore we propose a feasible quantum
optical quantum-walk experiment that can attain the
semiclassical limit and potentially beat it by exploiting
entangled photons.

Let us now establish a mathematically rigorous AQEM
model. In the lossless, decoherence-free case, anN-particle
input ‘‘pulse’’ state jc i 2 �N

i¼1H i is acted on sequen-

tially particle by particle by a device with unknown pa-
rameter �, which could be a multicomponent vector �,
according to Dð�;�iÞ:H i ! H i with �i a control pa-
rameter (possibly a multicomponent vector as well) that is
modified according to the measurement history on pre-
vious particles. Each D-transformed particle is measured
according to M:H i ! Oi for O a set of measurement
outcomes. For the interferometerOi ¼ f0; 1g; for the quan-
tum walk Oi ¼ f�i; . . . ; ig. Although D generically has a
2N � 2N representation, this reduces to N � N for a per-
mutationally symmetric input state jc i [16]. The sequence
� ¼ f�ig is the policy for controlling the interferometer in
order to extract a measurement of � with low imprecision
�N . Our aim is to devise an efficient algorithm that delivers
a fit policy� such that �N scales better than } ¼ 1=2, and
each policy is a test function, or particle, in the machine-
learning procedure.

Our policy-devising algorithm, which uses machine
learning, has the following inputs: number of particles N,
permutationally symmetric input state jc i 2 PCNþ1, a
prior probability distribution P for the unknown system
parameter � (typically uniform), the device operator
Dð�Þ 2 CNþ1 � CNþ1, the set of projectors �i for each
ith particle (jjihjj for j 2 f0; 1g in the interferometer case
and j 2 f�i; . . . ; ig for the quantum-walk case), an integer
l to determine which machine-learning algorithm to use
such as PSO or DE, the number � of particles, or ‘‘chro-
mosomes’’ in DE parlance, number � of iterations, the
fitness functional F that assesses the precision guaranteed
by executing the policy, and the maximum number � of
repetitions the machine-learning algorithm is permitted to
run before aborting. From the multitude of available ma-
chine learning techniques, we compare the two powerful
cases of PSO and DE to devise policies that deliver AQEM
parameter estimation.
The PSO algorithm is based on having multiple particles

undergoing independent stochastic searches interrupted by
periodic iterations of communication between overlapping
logarithmic-sized neighborhoods of particles that tend to
steer these particles depicted in Fig. 2(a), towards superior
policy regions of the vector space. Similarly DE also
employs multiple policies undergoing independent sto-
chastic searches. Instead of interruptions by rounds of

…

FIG. 2 (color online). (a) Pictorial representation of the PSO
algorithm. Each particle, represented here by a bird, stores its
current position [solid (red) circle] in the search space (actually
parameters of the decision tree), its best previous position [top
left (green arrow)] and the best neighbour position [bottom right
(blue arrow)]. Each bird undergoes simultaneous velocity vector
updates [to the dashed (red) circle] according to three terms: an
inertial term limiting the change in velocity plus two terms that
rescales and redirects the velocity to its own personal best and to
the best bird in the neighbourhood, respectively. (b) Pictorial
representation of the DE algorithm. Each chromosome is a
vertical block (of decision-tree parameters) and initialized to
random values in the search space (top left). For each chromo-
some, three random chromosomes are chosen to be parents of a
donor chromosome comprising random data from each parent
(top right). This donor chromosome is crossed randomly with the
original chromosome to create a trial chromosome (bottom left),
which is compared with the original (bottom right), and the fitter
chromosome is retained for the next iteration. The dashed line
represents a single iteration of the differential algorithm.
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communication and steering, DE is interrupted by a cross-
over breeding between the original chromosome and a
hybrid of three randomly chosen chromosomes from the
remaining set of policies. The fittest of the original versus
the cross-over of the original with the hybrid is retained for
the next round; see Fig. 2(b).

Algorithmic specific inputs for PSO are exploration
weight �, exploitation weight �, velocity clamping �,
and inertial weight !. For DE, the algorithmic inputs are
mutation scaling � and cross-over rate �. In order to
perform a fair comparison between PSO- and DE-based
adaptive policy-devising algorithms, we ensure that all
common input parameters are identical and parameters
specific to PSO or DE are optimized. Now we consider
how to make the policy-devising algorithm efficient and
also determine the space and time complexities. We red-
uce the space complexity by employing a logarithmic-
search heuristic that parametrizes the decision tree only
by its depth, and the depth equals N implying a space
cost OðNÞ [9].

We develop heuristics to ensure a polynomial time cost:
(i) simulating the interferometer for a single N-particle
pulse isOðN2Þ [16] § 4.2; (ii) iterating the search steps� 2
OðNÞ, which is higher than previous studies that set � 2
Oð1Þ but enables breaking the few-dozen-particle limit in
that work [9,10] for the the DE case but not for the PSO
case as shown in Fig. 3(a); (iii) assessing a candidate policy
from K 2 OðN2Þ samplings [10]; (iv) repeating for each of
the � 2 OðNÞ particles; and (v) constructing a starting
distribution from the (N � 1)-particle policy with concom-
itant time cost 2 OðNÞ. The N-particle policy imprecision
�N , determined from the preceding fittest (N � 1)-particle
policy has a ratio �N=�N�1 ¼ 1� 1=N, which necessi-
tates � 2 OðNÞ repetitions of the algorithm.

The adaptive interferometric phase-estimation algorithm
commenced with initial (unnormalized) multiparticle

two-mode entangled state [9,10]
P

N
n;k¼0 sin½ðkþ 1=N þ

2Þ��ei�ðk�nÞ=2dN=2
n�N=2;k�N=2ð�=2Þjn; N � ni with d��;� a

reduced rotation matrix element [17], and fitness function
for the phase-error distribution as jR�

�� Pð�Þei�d�j with �
the absolute difference between inferred and correct phase

in a training set. We see in Fig. 3(a) that the adaptive
interferometric-phase-estimation policies found using DE
surpass those found using PSO in that they maintain the
power-law scaling (better than semiclassical limit) past the
few-dozen particle-number limit.We are able to simulate up
to 98 particles in the input state with no sign of breakdown.
As we use the same space and time resources for the PSO-
andDE-based algorithms, an improvement from simulating
up to 45 particles in the former algorithm compared to 98
particles in the latter corresponds to a ð98=45Þ7 � 232-fold
effective increase in run time.
As DE is so much more powerful than PSO for adaptive

quantum metrology, we consider solving a significantly
more challenging AQEM problem, specifically estimating
the bias� of a quantum-walk coin [18]. The key challenge
is due to the larger number of measurement outcomes than
just two for interferometric phase estimation. For each
walker, the walker-coin basis states at time t are
fjx; ci: x 2 f�t; . . . ; tg; c 2 f�1; 1gg with dimension dt ¼
2ð2tþ 1Þ. Each quantum-walk step is a sequence of a coin
flip Cð�Þjci ¼ ffiffiffiffi

�
p j � 1i þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p j1i and a conditional
walker translation Sjx; ci ¼ jxþ c; ci. The step operation
Sð1 � CÞ is repeated t times.
The procedure to estimate bias� is similar to estimating

the interferometric phase in that a single pulse of sequen-
tial particles is injected into a quantum-walk apparatus of
duration t where the particles in this case are quantum
walkers. Unlike the interferometric case where each parti-
cle is equally likely to traverse each of two available paths,
here the bias causes an unequal split between multiple
paths, in contrast to the classical case where the bias shifts
the walker’s distribution left or right, the quantum-biased
coin alters the shape of the distribution.
We assume an initial N-walker input, adapted from the

two-walker state [19], such that the state is permutationally
symmetric, in order to ensure algorithmic time cost OðN2Þ
as in the interferometric-phase case. Furthermore each
walker’s initial state is symmetrized with respect to the
position around x ¼ 0. The position distribution for the
walker’s reduced state (tracing over the coin state)
becomes increasingly asymmetric due to the bias of the
coin, and we introduce the skewness of this distribution
(given that the quantum-coin bias alters the distribution
shape) as the fitness parameter in the machine-learning
algorithm. This machine-learning algorithm is part of an
AQEM algorithm responsible for finding a fit feedback
policy that determines how much to modify the coin’s
bias subsequent to each single-particle measurement.
For estimating the coin bias, we introduce an

effective heuristic based on reducing the d-ary decision
tree to a quaternary (d ¼ 4) decision tree and maintain-
ing the logarithmic search heuristic developed for the
interferometric-phase case [9]. The reason for d ¼ 4 begins
with recognizing that the quantum walker’s position distri-
bution can be broken up into four regions given by left outer,

4 20 40 98
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N N
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FIG. 3 (color online). Imprecision � of (a) the interferometric
phase and (b) the quantum-walk coin bias for the semiclassical
(uppermost dotted line) and ultimate quantum-limited (lowest
dashed line) cases DE (straight green middle line), PSO (blue
middle line that tilts upward for large N). The PSO- and
DE-based plots each required (a) 315 and (b) 403 CPU hours
on a cluster of 100 parallel cores each running at 2.66 GHz and
show } ¼ 0:74.
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left inner, right inner, and right outer. As is well known for
the coined quantum walk, the inner region of the position
distribution contains 1=3 of the position probability and is
approximately uniform. The outer region contains the
remaining 2=3 of the distribution and is highly peaked
[20]. The skewness of the distribution is expected to show
more strongly by comparing the left and right outer regions
rather than restricting to the binary case of comparing the
entire left and right regions.

We execute the policy-devising algorithm with this
d ¼ 4 heuristic with OðNÞ space cost and OðN7Þ time
cost as before. Figure 3(b) shows imprecision �N of pol-
icies found using PSO and DE with the semiclassical and
ultimate quantum power-law limits for reference, where
�N is the imprecision not of � but rather of t� because
the biased coin operation has been executed t times.
Specifically Fig. 3(b) shows power-law scaling for up to
35 walkers per pulse in the PSO case and fails beyond
35 walkers. Contrariwise the DE-based adaptive metrology
algorithm successfully determines policies that maintain
power-law scaling up to 75 walkers with no sign of
power-law breakdown. The resultant improvement from
35 to 75 walkers by using DE instead of PSO corresponds
to a ð75=35Þ7 � 208-fold decrease of effective run
time, which is comparable to the speed-up for the
interferometric-phase case.

AQEM for quantum walks is particularly exciting
because implementation is feasible with existing quantum
optical quantum-walk experimental techniques [12] as we
now show. In this approach quantum walkers are photons,
and the position degree of freedom is replaced by time of
arrival. The coin state corresponds to the polarization state
of the photon, and coin flips are executed using a half-wave
plate (HWP), which transforms the polarization into a
superposition of the two polarizations that can be
unequally weighted according to the angle 	 of the HWP
relative to one of the polarization axes. Quantum-walk
steps are implemented by having the photons circumam-
bulate an optical fiber loop as depicted in Fig. 4. A 50:50
beamsplitter enables the photon to exit the loop leading to
an avalanche photo diode (APD) where the position of the
walker is realized temporally as an arrival time. Thus, there
is only a 50% chance the photon will remain in the fiber
loop and advance to the next step.

In the model we propose, each walker performs t steps
before beingmeasured. Ourmodification to existing experi-
ments is shown in Fig. 4. This modification replaces the
50:50 beam splitter with an active switch into the detection
fiber (as suggested earlier [12]). This switch allows for a
controllable number t time steps. The ‘‘biased’’ coin is
achieved using the HWP with an unknown angle 	. The
adaptive coin operation is implemented by another HWP
with the angle 	 controlled by a processing unit pro-
grammed with the specific feedback policy found by our
algorithm. Our heuristic of grouping the measurement

outcomes is accomplished by translating those groupings
into arrival time bins. Thus our scheme could be imple-
mented and used to obtain the semiclassical limit and
possibly better if we can exploit entangled photons.
In summary we establish that DE is a powerful machine-

learning tool for devising adaptive quantum-enhanced met-
rology policies and that our DE-based policy-devising
algorithm significantly surpasses PSO for two important
cases: adaptive interferometric-phase estimation and esti-
mating the bias of a quantum walker’s coin. This latter case
entails using a d-ary decision tree where d can be much
greater than two, and we show that a d ¼ 4 heuristic is
effective even for large d. The power of the DE-based
algorithm is evident in the fact that we double the number
of particles solvable in a given computer time. Given the
OðN7Þ run-time cost of the algorithms, this means that we
have an effective run-time speed-up of approximately 27

over the previous best, namely the PSO-based algorithm.
Moreover, our new DE-based algorithm shows no sign of
power-law deviation for double the number of particles
compared to the PSO-based algorithm, which means not
only is there a run-time speed-up but also that the policies
show improvement right up to the data point for the largest
particle number. Finally we show that our adaptive quan-
tum metrology policy-devising algorithm can be effected
with current optical quantum-walk technology. Policies
for quantum metrology in the presence of phase noise
and decoherence of the multiphoton state are known using
PSO [10], but DE algorithms for these conditions are a
topic for future work.

FIG. 4 (color online). Schematic of proposed adaptive quan-
tum metrology experiment to determine the bias of the half-wave
plate (HWP) A laser source (red star) is attenuated to the single-
photon level. The field then passes through a polarizing beam
splitter (PBS), then a HWP, followed by a quarter-wave plate
(QWP) to prepare (‘‘Prep’’) any initial walker state. The beam
splitter is controlled by an active switch, which determines
whether the photon reenters the loop or is sent to the avalanche
photo diode (APD) detector (after t steps). Once in the fiber
network, the unknown bias coin operation is performed using a
half-wave plate with unknown angle 	. The adaptive coin
operation is effected by another HWP with 	 modified by the
processing unit (PU) subsequent to measurement of the previous
walker’s time of arrival. The photons then pass through a delay
loop with PBSs on either side effecting the shift-in-time
operation.
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