172 research outputs found

    Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles.

    Get PDF
    Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles

    B<i>rachypodium distachyon</i> exhibits compatible interactions with <i>Oculimacula </i>spp. and <i>Ramularia collo-cygni</i>, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases

    Get PDF
    Brachypodium distachyon (Bd) has established itself as an essential tool for comparative genomic studies in cereals and increasing attention is being paid to its potential as a model pathosystem. Eyespot and ramularia leaf spot (RLS) are important diseases of wheat, barley and other small-grain cereals for which very little is known about the mechanisms of host resistance despite urgent requirements for plant breeders to develop resistant varieties. This work aimed to test the compatibility of interaction of two Bd accessions with the cereal pathogens Oculimacula spp. and Ramularia collocygni, the causal agents of eyespot and RLS diseases, respectively. Results showed that both Bd accessions developed symptoms similar to those on the natural host for all pathogen species tested. Microscopy images demonstrated that R. collo-cygni produced secondary conidia and both Oculimacula spp. formed characteristic infection structures on successive tissue layers. Visual disease assessment revealed that quantitative differences in disease severity exist between the two Bd accessions. The results presented here provide the first evidence that Bd is compatible with the main causal agents of eyespot and RLS diseases, and suggest that future functional genetic studies can be undertaken to investigate the mechanisms of eyespot and RLS disease resistance using Bd

    Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor

    Get PDF
    The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale

    Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells

    Get PDF
    Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology

    Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects

    Get PDF
    Insulin resistance might be associated with an impaired ability of insulin to stimulate glucose oxidation and inhibit lipid oxidation. Insulin action is also inversely associated with TNF-α system and positively related to adiponectin. The aim of the present study was to analyze the associations between serum adiponectin, soluble TNF-α receptors concentrations and the whole-body insulin sensitivity, lipid and glucose oxidation, non-oxidative glucose metabolism (NOGM) and metabolic flexibility in lean and obese subjects. We examined 53 subjects: 25 lean (BMI < 25 kg × m−2) and 28 with overweight or obesity (BMI > 25 kg × m−2) with normal glucose tolerance. Hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese subjects had lower insulin sensitivity, adiponectin and higher sTNFR1 (all P < 0.001) and sTNFR2 (P = 0.001). Insulin sensitivity was positively related to adiponectin (r = 0.49, P < 0.001) and negatively related to sTNFR1 (r = −0.40, P = 0.004) and sTNFR2 (r = −0.52, P < 0.001). Adiponectin was related to the rate of glucose (r = 0.47, P < 0.001) and lipid (r = −0.40, P = 0.003) oxidation during the clamp, NOGM (r = 0.41, P = 0.002) and metabolic flexibility (r = 0.36, P = 0.007). Serum sTNFR1 and sTNFR2 were associated with the rate of glucose (r = −0.45, P = 0.001; r = −0.51, P < 0.001, respectively) and lipid (r = 0.52, P < 0.001; r = 0.46, P = 0.001, respectively) oxidation during hyperinsulinemia, NOGM (r = −0.31, P = 0.02; r = −0.43, P = 0.002, respectively) and metabolic flexibility (r = −0.47 and r = −0.51, respectively, both P < 0.001) in an opposite manner than adiponectin. Our data suggest that soluble TNF-α receptors and adiponectin have multiple effects on glucose and lipid metabolism in obesity

    Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease

    Get PDF
    Brachypodium distachyon, a small annual grass with seed storage globulins as primary protein reserves was used in our study to analyse the toxic nature of non-prolamin seed storage proteins related to celiac disease. The main storage proteins of B. distachyon are the 7S globulin type proteins and the 11S, 12S seed storage globulins similar to oat and rice. Immunoblot analyses using serum samples from celiac disease patients were carried out followed by the identification of immune-responsive proteins using mass spectrometry. Serum samples from celiac patients on a gluten-free diet, from patients with Crohn's disease and healthy subjects, were used as controls. The identified proteins with intense serum-IgA reactivity belong to the 7S and 11-12S seed globulin family. Structure prediction and epitope predictions analyses confirmed the presence of celiac disease-related linear B cell epitope homologs and the presence of peptide regions with strong HLA-DQ8 and DQ2 binding capabilities. These results highlight that both MHC-II presentation and B cell response may be developed not only to prolamins but also to seed storage globulins. This is the first study of the non-prolamin type seed storage proteins of Brachypodium from the aspect of the celiac disease

    Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    Get PDF
    Background: Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings: Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance: Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation

    Excessive Food Intake, Obesity and Inflammation Process in Zucker fa/fa Rat Pancreatic Islets

    Get PDF
    Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory process. That the latter could contribute to β-cell hyperactivity/proliferation and possibly lead to progressive β-cell failure in these animals, deserves further investigations
    corecore