127 research outputs found

    Caffeine stabilises fission yeast Wee1 in a Rad24-dependent manner but attenuates its expression in response to DNA damage identifying a putative role for TORC1 in mediating its effects on cell cycle progression

    Get PDF
    The widely consumed neuroactive compound caffeine has generated much interest due to its ability to override the DNA damage and replication checkpoints. Previously Rad3 and its homologues was thought to be the target of caffeine’s inhibitory activity. Later findings indicate that the Target of Rapamycin Complex 1 (TORC1) is the preferred target of caffeine. Effective Cdc2 inhibition requires both the activation of the Wee1 kinase and inhibition of the Cdc25 phosphatase. The TORC1, DNA damage, and environmental stress response pathways all converge on Cdc25 and Wee1. We previously demonstrated that caffeine overrides DNA damage checkpoints by modulating Cdc25 stability. The effect of caffeine on cell cycle progression resembles that of TORC1 inhibition. Furthermore, caffeine activates the Sty1 regulated environmental stress response. Caffeine may thus modulate multiple signalling pathways that regulate Cdc25 and Wee1 levels, localisation and activity. Here we show that the activity of caffeine stabilises both Cdc25 and Wee1. The stabilising effect of caffeine and genotoxic agents on Wee1 was dependent on the Rad24 chaperone. Interestingly, caffeine inhibited the accumulation of Wee1 in response to DNA damage. Caffeine therefore modulates cell cycle progression contextually through increased Cdc25 activity and Wee1 repression following DNA damage via TORC1 inhibition

    Caffeine Stabilises Fission Yeast Wee1 in a Rad24-Dependent Manner but Attenuates Its Expression in Response to DNA Damage

    Get PDF
    The widely consumed neuroactive compound caffeine has generated much interest due to its ability to override the DNA damage and replication checkpoints. Previously Rad3 and its homologues was thought to be the target of caffeine’s inhibitory activity. Later findings indicate that the Target of Rapamycin Complex 1 (TORC1) is the preferred target of caffeine. Effective Cdc2 inhibition requires both the activation of the Wee1 kinase and inhibition of the Cdc25 phosphatase. The TORC1, DNA damage, and environmental stress response pathways all converge on Cdc25 and Wee1. We previously demonstrated that caffeine overrides DNA damage checkpoints by modulating Cdc25 stability. The effect of caffeine on cell cycle progression resembles that of TORC1 inhibition. Furthermore, caffeine activates the Sty1 regulated environmental stress response. Caffeine may thus modulate multiple signalling pathways that regulate Cdc25 and Wee1 levels, localisation and activity. Here we show that the activity of caffeine stabilises both Cdc25 and Wee1. The stabilising effect of caffeine and genotoxic agents on Wee1 was dependent on the Rad24 chaperone. Interestingly, caffeine inhibited the accumulation of Wee1 in response to DNA damage. Caffeine may modulate cell cycle progression through increased Cdc25 activity and Wee1 repression following DNA damage via TORC1 inhibition, as TORC1 inhibition increased DNA damage sensitivity

    The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress

    Get PDF
    This article is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License.Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes. © 2014 Muñoz et al.P.G. was supported by a fellowship from the Junta de Castilla y León, and S.M. acknowledges support from a JAE-PreDoc fellowship granted by the Consejo Superior de Investigaciones Científicas, Spain. The text was revised by N. Skinner. This work was supported by grants BFU2008-00963/BMC and BFU2011-24683/BMC from the Comisión Interdepartamental de Ciencia y Tecnología, Spain, and GR231 from the Junta de Castilla y León, as well as by grant 10-0633 from the Swedish Cancer Fund to P.S. I.B.F.G. acknowledges the institutional support granted by the Ramón Areces Foundation during 2011–2012.Peer Reviewe

    Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation.

    Get PDF
    BACKGROUND: The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. RESULTS: We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. CONCLUSION: Evolutionary conservation of uORFs in yeasts can be traced up to 100 million years of separation. The conserved uORFs have certain characteristics with respect to length, distance from each other and from the main start codon, and folding energy of the sequence. These newly found characteristics can be used to facilitate detection of other conserved uORFs.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Predicting functional upstream open reading frames in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive.</p> <p>Results</p> <p>In this paper, a new computational approach to predicting functional uORFs in the yeast <it>Saccharomyces cerevisiae </it>is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (<it>RPC11</it>, <it>TPK1</it>, and <it>FOL1</it>) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes <it>LDB17</it>, <it>HEM3</it>, <it>CIN8</it>, <it>BCK2</it>, <it>PMC1</it>, <it>FAS1</it>, <it>APP1</it>, <it>ACC1</it>, <it>CKA2</it>, <it>SUR1</it>, and <it>ATH1 </it>are strong candidates for wet-lab experimental studies.</p> <p>Conclusions</p> <p>Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.</p

    A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease

    Get PDF
    The ongoing COVID-19 pandemic urges searches for antiviral agents that can block infection or ameliorate its symptoms. Using dissimilar search strategies for new antivirals will improve our overall chances of finding effective treatments. Here, we have established an experimental platform for screening of small molecule inhibitors of the SARS-CoV-2 main protease in Saccharomyces cerevisiae cells, genetically engineered to enhance cellular uptake of small molecules in the environment. The system consists of a fusion of the Escherichia coli toxin MazF and its antitoxin MazE, with insertion of a protease cleavage site in the linker peptide connecting the MazE and MazF moieties. Expression of the viral protease confers cleavage of the MazEF fusion, releasing the MazF toxin from its antitoxin, resulting in growth inhibition. In the presence of a small molecule inhibiting the protease, cleavage is blocked and the MazF toxin remains inhibited, promoting growth. The system thus allows positive selection for inhibitors. The engineered yeast strain is tagged with a fluorescent marker protein, allowing precise monitoring of its growth in the presence or absence of inhibitor. We detect an established main protease inhibitor by a robust growth increase, discernible down to 1 mM. The system is suitable for robotized large-scale screens. It allows in vivo evaluation of drug candidates and is rapidly adaptable for new variants of the protease with deviant site specificities. IMPORTANCE The COVID-19 pandemic may continue for several years before vaccination campaigns can put an end to it globally. Thus, the need for discovery of new antiviral drug candidates will remain. We have engineered a system in yeast cells for the detection of small molecule inhibitors of one attractive drug target of SARS-CoV-2, its main protease, which is required for viral replication. The ability to detect inhibitors in live cells brings the advantage that only compounds capable of entering the cell and remain stable there will score in the system. Moreover, because of its design in yeast cells, the system is rapidly adaptable for tuning the detection level and eventual modification of the protease cleavage site in the case of future mutant variants of the SARSCoV-2 main protease or even for other proteases

    Responsiveness of a modified version of the postural assessment scale for stroke patients and longitudinal change in postural control after stroke- Postural Stroke Study in Gothenburg (POSTGOT) -

    Get PDF
    Abstract Background Responsiveness data certify that a change in a measurement output represents a real change, not a measurement error or biological variability. The objective was to evaluate the responsiveness of the modified version of the Postural Assessment Scale for Stroke Patients (SwePASS) in patients with a first event of stroke. An additional aim was to estimate the change in postural control during the first 12 months after stroke onset. Methods The SwePASS assessments were conducted during the first week and 3, 6 and 12 months after stroke in 90 patients. Svensson’s method, Relative Position (RP), Relative Concentration (RC) and Relative Rank Variance (RV), were used to estimate the scale’s responsiveness and the patients’ change in postural control over time. Results From the first week to 3 months after stroke, the patients improved in terms of postural control with 2 to 12 times larger systematic changes in Relative Position (RP), for which 9 items and the total score showed a significant responsiveness to change when compared to the intrarater reliability measurement error of the SwePASS reported in a previous study. When SwePASS was used to assess change in postural control between the first week and 3 months, 74% of the patients received higher scores while 10% received lower scores, RP 0.31 (95% CI 0.219-0.402). The corresponding figures between 3 and 6 and between 6 and 12 months were 37% and 16%, RP 0.09 (95% CI 0.030-0.152), and 18% and 26%, RP −0.07 (95% CI −0.134- (−0.010)), respectively. Conclusions The SwePASS is responsive to change. Postural control evaluated using the SwePASS showed an improvement during the first 6 months after stroke. The measurement property, in the form of responsiveness, shows that the SwePASS scoring method can be considered for use in rehabilitation when assessing postural control in patients after stroke, especially during the first 3 months.</p

    Stroke survivors’ priorities for research related to life after stroke

    Get PDF
    Background - Stroke has transitioned from an untreatable, unpreventable disease to a highly treatable and preventable disease over recent decades, and the number of stroke survivors is expected to increase. The number is also foreseen to grow larger as a result of an aging population. With an escalating number of stroke survivors, research on how to improve life after stroke is needed. Aims - The primary aim was to determine which area of research related to life after stroke that stroke patients and their informal carers prioritized as being relevant and valuable. Methods - A cross-sectional study of all patients who had completed the 12 months of follow-up in the EFFECTS trial. In the questionnaire the stroke patients and their informal carers were asked to prioritize areas of research they considered important and valuable with respect to their life after stroke. Results - Of the 731 patients who were still alive after the 12 months-follow-up, 589 responded. The most prioritized areas of research were Balance and walking difficulties (290 (49%) responders) and Post-stroke fatigue (173 (29%) responders). Women answered the undefined alternative “other” more often than men (43 women (11%) versus 11 men (6%), p = .04). Younger patients prioritized Post-stroke fatigue to a higher extent (88 (45%) versus (22%), p Balance and walking difficulties (214 (54%) versus 76 (40%), p = .002) and Speech difficulties (38 (10%) versus 9 (5%), p = .045). Conclusions - Life after stroke is perceived differentely with aging. Future research should address strategies to face challenges such as imbalance and walking difficulties and post-stroke-fatigue
    corecore