35 research outputs found

    Molecular Typing of Neisseria gonorrhoeae Isolates by Pyrosequencing of Highly Polymorphic Segments of the porB Gene

    No full text
    For prevention and control of gonorrhea, an objective, highly discriminating, and reproducible molecular epidemiological characterization of Neisseria gonorrhoeae is essential. In the present study, in pursuance of providing such qualities, pyrosequencing technology, a fast real-time DNA sequence analysis, was applied to six short, highly polymorphic porB gene segments, with subsequent genetic variant (genovar) determination of the bacterial isolates. The sequencing templates were obtained by real-time PCR amplification, which also included fluorescence melting curve analysis of the entire porB gene in order to determine the genogroup (porB1a or porB1b allele) prior to pyrosequencing analysis. The PSQ 96 MA system used allowed rapid (in approximately 1.5 h) determination of 96 sequences of 20 to 65 correct nucleotides each. The results were reproducible and mostly in concordance with the results of conventional Sanger dideoxy sequencing, with the exception of shorter read lengths and some uncertainty in determining the correct number of identical nucleotides in homopolymeric segments. The number of sequence variants identified in each of the six highly polymorphic segments of the porB1a and porB1b alleles (encoding surface-exposed amino acid loops of the mature PorB protein) ranged from 5 to 11 and from 8 to 39, respectively. Among porB1a isolates (n = 22) and porB1b isolates (n = 65), 22 and 64 unique genovars, respectively, were identified. All isolates were typeable. The present results provide evidence of a high discriminatory ability, practically the same as that for sequencing of the entire porB gene. In conclusion, the fast and high-throughput pyrosequencing technology can be used for molecular epidemiological characterization of N. gonorrhoeae

    Total Variation in the penA Gene of Neisseria meningitidis: Correlation between Susceptibility to β-Lactam Antibiotics and penA Gene Heterogeneity

    No full text
    In recent decades, the prevalence of Neisseria meningitidis isolates with reduced susceptibility to penicillins has increased. The intermediate resistance to penicillin (Pen(i)) for most strains is due mainly to mosaic structures in the penA gene, encoding penicillin-binding protein 2. In this study, susceptibility to β-lactam antibiotics was determined for 60 Swedish clinical N. meningitidis isolates and 19 reference strains. The penA gene was sequenced and compared to 237 penA sequences from GenBank in order to explore the total identified variation of penA. The divergent mosaic alleles differed by 3% to 24% compared to those of the designated wild-type penA gene. By studying the final 1,143 to 1,149 bp of penA in a sequence alignment, 130 sequence variants were identified. In a 402-bp alignment of the most variable regions, 84 variants were recognized. Good correlation between elevated MICs and the presence of penA mosaic structures was found especially for penicillin G and ampicillin. The Pen(i) isolates comprised an MIC of >0.094 μg/ml for penicillin G and an MIC of >0.064 μg/ml for ampicillin. Ampicillin was the best antibiotic for precise categorization as Pen(s) or Pen(i). In comparison with the wild-type penA sequence, two specific Pen(i) sites were altered in all except two mosaic penA sequences, which were published in GenBank and no MICs of the corresponding isolates were described. In conclusion, monitoring the relationship between penA sequences and MICs to penicillins is crucial for developing fast and objective methods for susceptibility determination. By studying the penA gene, genotypical determination of susceptibility in culture-negative cases can also be accomplished

    Comparison of Serologic and Genetic porB-Based Typing of Neisseria gonorrhoeae: Consequences for Future Characterization

    No full text
    Due to temporal changes in the epidemiology of gonorrhea, a precise characterization of Neisseria gonorrhoeae is essential. In the present study genetic heterogeneity in the porB genes of N. gonorrhoeae was examined, and serovar determination was compared to porB gene sequencing. Among 108 N. gonorrhoeae isolates, phylogenetic analysis of the entire porB alleles (924 to 993 bp) identified 87 unique sequences. By analyzing only the four to six most heterogeneous porB gene regions (174 to 363 bp), 86 out of these 87 genetic variants were identified. Consequently, analysis of shorter highly variable regions of the porB gene generates high-level discriminatory ability as well as fast, objective, reproducible, and portable data for epidemiological characterization of N. gonorrhoeae. Regarding putative antigenic epitopes of PorB for Genetic Systems monoclonal antibodies (MAbs), some of the previous findings were confirmed, but new findings were also observed. For several of the MAbs, however, the precise amino acid residues of PorB critical for single-MAb reactivity were difficult to identify. In addition, repeated serovar determination of 108 N. gonorrhoeae isolates revealed discrepancies for 34 isolates, mostly due to nonreproducible reactivity with single MAbs. Thus, the prospects of a genetic typing system with congruent translation of the serovar determination seem to be limited. In conclusion, analysis of short highly variable regions of the porB gene could form the basis for a fast molecular epidemiological tool for the examination of emergence and transmission of N. gonorrhoeae strains within the community

    Direct and Rapid Identification and Genogrouping of Meningococci and porA Amplification by LightCycler PCR

    No full text
    Invasive meningococcal infections are usually diagnosed by culture. This approach is far from optimal due to, e.g., treatment with precollection antibiotics. Molecular-genetics methods are therefore recognized as important tools for optimal laboratory confirmation of meningococcal infections as well as characterization of meningococci (Mc). The aims of the present study were to develop real-time PCRs for identification and genogrouping (A, B, C, Y, and W-135) of Mc and porA amplification that further can be used for subsequent genosubtyping. In a first run Mc were identified. In a second run they were genogrouped and porA genes were amplified. All the Mc isolates (n = 71) but one and cerebrospinal fluid samples (n = 11) tested gave the expected positive results. The specificity, inter- and intra-assay variations, and effects of different amounts of DNA on the melting temperatures were also explored. The LightCycler PCR system was found to effectively detect and characterize Mc in a few hours. This testing, including the DNA sequencing of the porA gene to reveal the genosubtype, does not take more than a working day, and the results can be compared to those from culturing with phenotypic analysis, which takes at least a few days

    Long-Term Persistence of a Discotheque-Associated Invasive Neisseria meningitidis Group C Strain as Proven by Pulsed-Field Gel Electrophoresis and porA Gene Sequencing

    No full text
    A cluster of a Neisseria meningitidis serogroup C strain causing invasive disease was investigated. Five out of seven cases were associated with a particular discotheque. The strains were indistinguishable, as revealed by pulsed-field gel electrophoresis and sequencing of variable regions of the porA gene, but caused strikingly different clinical presentations during 5 months

    Antibiotic susceptibility of invasive Neisseria meningitidis isolates from 1995 to 2008 in Sweden : the meningococcal population remains susceptible

    No full text
    The susceptibility to 7 antibiotics was determined for all Swedish invasive Neisseria meningitidis isolates from 1995 to 2008 (N=717). In general, these remain highly susceptible to the antibiotics recommended for use. Accordingly, penicillin G remains effective for the treatment of invasive meningococcal disease and ciprofloxacin appropriate for prophylaxis

    Etiologic Diagnosis of Adult Bacterial Pneumonia by Culture and PCR Applied to Respiratory Tract Samples

    No full text
    Respiratory culture and multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, and Chlamydophila pneumoniae were applied to sputum, nasopharyngeal swabs, and nasopharyngeal aspirates from 235 adult patients with community-acquired pneumonia and 113 controls. Both culture and multiplex PCR performed well with the different samples and appear to be useful as diagnostic tools
    corecore