33 research outputs found

    Ghrelin is related to lower brain reward activation during touch

    Get PDF
    The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.publishedVersio

    Smoking, use of smokeless tobacco, HLA genotypes and incidence of latent autoimmune diabetes in adults

    Get PDF
    Aims/hypotheses Smoking and use of smokeless tobacco (snus) are associated with an increased risk of type 2 diabetes. We investigated whether smoking and snus use increase the risk of latent autoimmune diabetes in adults (LADA) and elucidated potential interaction with HLA high-risk genotypes. Methods Analyses were based on Swedish case-control data (collected 2010-2019) with incident cases of LADA (n=593) and type 2 diabetes (n=2038), and 3036 controls, and Norwegian prospective data (collected 1984-2019) with incident cases of LADA (n=245) and type 2 diabetes (n=3726) during 1,696,503 person-years of follow-up. Pooled RRs with 95% CIs were estimated for smoking, and ORs for snus use (case-control data only). The interaction was assessed by attributable proportion (AP) due to interaction. A two-sample Mendelian randomisation (MR) study on smoking and LADA/type 2 diabetes was conducted based on summary statistics from genome-wide association studies. Results Smoking (RRpooled 1.30 [95% CI 1.06, 1.59] for current vs never) and snus use (OR 1.97 [95% CI 1.20, 3.24] for >= 15 box-years vs never use) were associated with an increased risk of LADA. Corresponding estimates for type 2 diabetes were 1.38 (95% CI 1.28, 1.49) and 1.92 (95% CI 1.27, 2.90), respectively. There was interaction between smoking and HLA high-risk genotypes (AP 0.27 [95% CI 0.01, 0.53]) in relation to LADA. The positive association between smoking and LADA/type 2 diabetes was confirmed by the MR study. Conclusions/interpretation Our findings suggest that tobacco use increases the risk of LADA and that smoking acts synergistically with genetic susceptibility in the promotion of LADA.Peer reviewe

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    Get PDF
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement. Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R)

    Social-affective touch and ghrelin

    No full text

    Metabolomics to Diagnose Oxidative Stress in Perinatal Asphyxia: Towards a Non-Invasive Approach

    No full text
    There is a need for feasible and non-invasive diagnostics in perinatal asphyxia. Metabolomics is the study of small molecular weight products of cellular metabolism that may, directly and indirectly, reflect the level of oxidative stress. Saliva analysis is a novel approach that has a yet unexplored potential in metabolomics in perinatal asphyxia. The aim of this review was to give an overview of metabolomics studies of oxidative stress in perinatal asphyxia, particularly searching for studies analyzing non-invasively collected biofluids including saliva. We searched the databases PubMed/Medline and included 11 original human and 4 animal studies. In perinatal asphyxia, whole blood, plasma, and urine are the most frequently used biofluids used for metabolomics analyses. Although changes in oxidative stress-related salivary metabolites have been reported in adults, the utility of this approach in perinatal asphyxia has not yet been explored. Human and animal studies indicate that, in addition to antioxidant enzymes, succinate and hypoxanthine, as well acylcarnitines may have discriminatory diagnostic and prognostic properties in perinatal asphyxia. Researchers may utilize the accumulating evidence of discriminatory metabolic patterns in perinatal asphyxia to develop bedside methods to measure oxidative stress metabolites in perinatal asphyxia. Although only supported by indirect evidence, saliva might be a candidate biofluid for such point-of-care diagnostics

    A Sterol Panel for Multiple Rare Lipid Disorders: Validation and Application for Sitosterolemia, Cerebrotendinous Xanthomatosis and Smith-Lemli-Opitz Syndome

    No full text
    BACKGROUND. Disease-specific sterols accumulate in the blood of patients with several rare lipid disorders. Biochemical measurement of these sterols is important for correct diagnosis and sometimes monitoration of treatment. Existing methods to measure sterols in blood, particularly plant sterols, are often laborious and time consuming. Partly as a result, clinical access to sterol measurements are limited in many parts of the world. METHODS. A simple and rapid method to extract free sterols from human serum and quantitate their concentration using isotope-dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) without derivatization was developed. The method was designed to be “compatible” with routine workflows (eg. 96-well format) in a clinical lab and was extensively validated. Serum from 73 controls were analyzed and used to estimate the upper reference limits for sitosterol, campesterol, stigmasterol, desmosterol, 7-dehydrocholesterol (7DHC), lathosterol and cholestanol. Serum from patients with the rare lipid disorders sitosterolemia (n=7), Smith-Lemli-Optiz syndrome (SLOS; n=1) and cerebrotendinous xanthomatosis (CTX; n=1) were analyzed. RESULTS. All seven sitosterolemia patients were measured to have greatly elevated levels of free plant sterols (sitosterol, campesterol and stigmasterol) compared to the controls. The SLOS serum contained massively increased concentrations of 7DHC and an unidentified compound (likely 8-dehydrocholesterol). CTX serum contained greatly increased concentrations of cholestanol, as well as 7DHC and lathosterol. Spiking experiments indicated that the method is likely also useful in the diagnosis of desmosterolosis and lathosterolosis. CONCLUSION. The reported method is a relatively simple and fast method capable of quantitating diagnostically important sterols and differentiating patients with several rare lipid disorders from controls
    corecore