64 research outputs found

    Cancer in Persons Working in Dry Cleaning in the Nordic Countries

    Get PDF
    U.S. studies have reported an increased risk of esophageal and some other cancers in dry cleaners exposed to tetrachloroethylene. We investigated whether the U.S. findings could be reproduced in the Nordic countries using a series of case–control studies nested in cohorts of laundry and dry-cleaning workers identified from the 1970 censuses in Denmark, Norway, Sweden, and Finland. Dry-cleaning work in the Nordic countries during the period when tetrachloroethylene was the dominant solvent was not associated with an increased risk of esophageal cancer [rate ratio (RR) = 0.76; 95% confidence interval (CI), 0.34–1.69], but our study was hampered by some unclassifiable cases. The risks of cancer of the gastric cardia, liver, pancreas, and kidney and non-Hodgkin lymphoma were not significantly increased. Assistants in dry-cleaning shops had a borderline significant excess risk of cervical cancer not found in women directly involved in dry cleaning. We found an excess risk of bladder cancer (RR = 1.44; 95% CI, 1.07–1.93) not associated with length of employment. The finding of no excess risk of esophageal cancer in Nordic dry cleaners differs from U.S. findings. Chance, differences in level of exposure to tetrachloroethylene, and confounding may explain the findings. The overall evidence on bladder cancer in dry cleaners is equivocal

    Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    Get PDF
    <p>Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (–OH and –COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects.</p

    Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Get PDF
    BACKGROUND: Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. RESULTS: We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. CONCLUSIONS: Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae

    Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors:a feasibility study

    Get PDF
    INTRODUCTION: Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[(18) F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N(4))-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of (64)Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV). MATERIALS AND METHODS: Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, (64)Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h (64)Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUV(max). The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D( B )) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and (64)Cu-ATSM sub-volumes. RESULTS: The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D( B ) whereas the intersection allowed a substantial dose escalation. CONCLUSIONS: FDG and (64)Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer complementing information on tumor physiology. Targeting the combined PET positive volume (BTV) for dose escalation within the GTV results in a limited D( B ). This suggests a more refined dose redistribution based on a weighted combination of the PET tracers in order to obtain an improved tumor control

    Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The FAST (food allergy-specific immunotherapy) project aims at developing safe and effective subcutaneous immunotherapy for fish allergy, using recombinant hypoallergenic carp parvalbumin, Cyp c 1.Preclinical characterization and good manufacturing practice (GMP) production of mutant Cyp (mCyp) c 1.Escherichia coli-produced mCyp c 1 was purified using standard chromatographic techniques. Physicochemical properties were investigated by gel electrophoresis, size exclusion chromatography, circular dichroism spectroscopy, reverse-phase high-performance liquid chromatography and mass spectrometry. Allergenicity was assessed by ImmunoCAP inhibition and basophil histamine release assay, immunogenicity by immunization of laboratory animals and stimulation of patients' peripheral blood mononuclear cells (PBMCs). Reference molecules were purified wild-type Cyp c 1 (natural and/or recombinant). GMP-compliant alum-adsorbed mCyp c 1 was tested for acute toxicity in mice and rabbits and for repeated-dose toxicity in mice. Accelerated and real-time protocols were used to evaluate stability of mCyp c 1 as drug substance and drug product.Purified mCyp c 1 behaves as a folded and stable molecule. Using sera of 26 double-blind placebo-controlled food-challenge-proven fish-allergic patients, reduction in allergenic activity ranged from 10- to 5,000-fold (1,000-fold on average), but with retained immunogenicity (immunization in mice/rabbits) and potency to stimulate human PBMCs. Toxicity studies revealed no toxic effects and real-time stability studies on the Al(OH)3-adsorbed drug product demonstrated at least 20 months of stability.The GMP drug product developed for treatment of fish allergy has the characteristics targeted for in FAST: i.e. hypoallergenicity with retained immunogenicity. These results have warranted first-in-man immunotherapy studies to evaluate the safety of this innovative vaccine.info:eu-repo/grantAgreement/EC/FP7/20187

    Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters

    Get PDF
    The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures. © Springer Science+Business Media B.V. 2009
    corecore