6 research outputs found

    Growth and characterisation of single grain Al-Cu-Ru icosahedral quasicrystals from self-fluxes

    No full text
    International audienceIn order to obtain high-quality single grains of the Al-Cu-Ru icosahedral quasicrystal (iQC), suitable for a structure analysis, the crystal growth conditions with the self-flux method have been studied. The melts of the master alloys with the compositions of Al57.0+xCu39.5-xRu3.5 (x = 0, 2.5, 5, 7.5, 10) and Al62.0Cu34.0+y Ru4.0-y (y = 0, 0.5, 1.5) were held at 1150°C for 2 h, then cooled down to 800, 900, or 1000°C at a rate of −2 K/h, and subsequently retained for various durations, up to 750 h. Single grain iQCs having several millimetre-sizes, which were evaluated their quality by powder X-ray diffraction (XRD), were grown throughout this study. The peak of (664004) reflection in powder XRD of the iQCs grown at 1000°C has approximately 50% narrower width than that grown at 800°C. The inhomogeneity of the compositions intra- as well as inter-grains grown at 800°C was observed. High-quality single grains with homogeneous composition could be achieved with a long-time annealing at 900°C or regardless of the annealing time at 1000°C. By changing the Al/Cu ratio of the master alloys, the composition could also be controlled for the iQCs grown at 1000°C. Single-crystal XRD experiment with synchrotron radiation on Al66.6Cu16.4Ru17.0 iQC, grown at 1000°C, resulted in the collection of 2680 independent Bragg reflections that confirms the high-quality of the sample. The phase retrieval of the diffraction data resulted successfully in obtaining the structure solution, which reveals some characteristic features of this face-centred iQC structure

    Growth and characterisation of single grain Al-Cu-Ru icosahedral quasicrystals from self-fluxes

    No full text
    International audienceIn order to obtain high-quality single grains of the Al-Cu-Ru icosahedral quasicrystal (iQC), suitable for a structure analysis, the crystal growth conditions with the self-flux method have been studied. The melts of the master alloys with the compositions of Al57.0+xCu39.5-xRu3.5 (x = 0, 2.5, 5, 7.5, 10) and Al62.0Cu34.0+y Ru4.0-y (y = 0, 0.5, 1.5) were held at 1150°C for 2 h, then cooled down to 800, 900, or 1000°C at a rate of −2 K/h, and subsequently retained for various durations, up to 750 h. Single grain iQCs having several millimetre-sizes, which were evaluated their quality by powder X-ray diffraction (XRD), were grown throughout this study. The peak of (664004) reflection in powder XRD of the iQCs grown at 1000°C has approximately 50% narrower width than that grown at 800°C. The inhomogeneity of the compositions intra- as well as inter-grains grown at 800°C was observed. High-quality single grains with homogeneous composition could be achieved with a long-time annealing at 900°C or regardless of the annealing time at 1000°C. By changing the Al/Cu ratio of the master alloys, the composition could also be controlled for the iQCs grown at 1000°C. Single-crystal XRD experiment with synchrotron radiation on Al66.6Cu16.4Ru17.0 iQC, grown at 1000°C, resulted in the collection of 2680 independent Bragg reflections that confirms the high-quality of the sample. The phase retrieval of the diffraction data resulted successfully in obtaining the structure solution, which reveals some characteristic features of this face-centred iQC structure

    The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress

    No full text
    Increased brain serotonin may improve the ability to cope with stress, whereas a decline in serotonin activity is involved in depressive mood. The uptake of the serotonin precursor, tryptophan, into the brain is dependent on nutrients that influence the cerebral availability of tryptophan via a change in the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). Therefore, a diet-induced increase in tryptophan availability may increase brain serotonin synthesis and improve coping and mood, particularly in stress-vulnerable subjects.We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, may increase the plasma Trp-LNAA ratio and reduce depressive mood and cortisol concentrations in stress-vulnerable subjects under acute stress.Twenty-nine highly stress-vulnerable subjects and 29 relatively stress-invulnerable subjects participated in a double-blind, placebo-controlled study. Subjects were exposed to experimental stress after the intake of a diet enriched with either alpha-lactalbumin or sodium-caseinate. Diet-induced changes in the plasma Trp-LNAA ratio and prolactin were measured. Changes in mood, pulse rate, skin conductance, and cortisol concentrations were assessed before and after the stressor.The plasma Trp-LNAA ratio was 48% higher after the alpha-lactalbumin diet than after the casein diet (P = 0.0001). In stress-vulnerable subjects this was accompanied by higher prolactin concentrations (P = 0.001), a decrease in cortisol (P = 0.036), and reduced depressive feelings (P = 0.007) under stress.Consumption of a dietary protein enriched in tryptophan increased the plasma Trp-LNAA ratio and, in stress-vulnerable subjects, improved coping ability, probably through alterations in brain serotonin
    corecore