33 research outputs found

    Smoking Related Diseases: The Central Role of Monoamine Oxidase

    Get PDF
    Smoking is a major risk factor of morbidity and mortality. It is well established that monoamine oxidase (MAO) activity is decreased in smokers. Serotonin (5-HT), a major substrate for MAO that circulates as a reserve pool stored in platelets, is a marker of platelet activation. We recently reported that smoking durably modifies the platelet 5-HT/MAO system by inducing a demethylation of the MAO gene promoter resulting in high MAO protein concentration persisting more than ten years after quitting smoking. The present data enlarges the results to another MAO substrate, norepinephrine (NE), further confirming the central role of MAO in tobacco use-induced diseases. Thus, MAO could be a readily accessible and helpful marker in the risk evaluation of smoking-related diseases, from cardiovascular and pulmonary diseases to depression, anxiety and cancer. The present review implements the new finding of epigenetic regulation of MAO and suggests that smoking-induced MAO demethylation can be considered as a hallmark of smoking-related cancers similarly to other aberrant DNA methylations

    Reversible atransferrinemia in a patient with chronic enteropathy: is transferrin mandatory for iron transport?

    Get PDF
    Herein, we report the case of a 42-year-old woman, hospitalized in a French tertiary hospital for a relapse of a chronic enteropathy, who was found on admission to have no detectable serum transferrin. Surprisingly, she only exhibited mild anaemia. This atransferrinemia persisted for two months throughout her hospitalization, during which her haemoglobin concentration remained broadly stable. Based on her clinical history and evolution, we concluded to an acquired atransferrinemia secondary to chronic undernutrition, inflammation and liver failure. We discuss the investigations performed in this patient, and hypotheses regarding the relative stability of her haemoglobin concentration despite the absence of detectable transferrin

    Performance evaluation of the high sensitive troponin I assay on the Atellica IM analyser

    Get PDF
    The Fourth Universal Definition of Myocardial Infarction Global Taskforce recommends the use of high sensitive troponin (hs-Tn) assays in the diagnosis of acute myocardial infarction. We evaluated the analytical performance of the Atellica IM High-sensitivity Troponin I Assay (hs-TnI) (Siemens Healthcare Diagnostics Inc., Tarrytown, USA) and compared its performance to other hs-TnI assays (Siemens Advia Centaur, Dimension Vista, Dimension EXL, and Abbott Architect (Wiesbaden, Germany)) at one or more sites across Europe. Precision, detection limit, linearity, method comparison, and interference studies were performed according to Clinical and Laboratory Standards Institute protocols. Values in 40 healthy individuals were compared to the manufacturer’s cut-offs. Sample turnaround time (TAT) was examined. Imprecision repeatability CVs were 1.1–4.7% and within-lab imprecision were 1.8–7.6% (10.0–25,000 ng/L). The limit of blank (LoB), detection (LoD), and quantitation (LoQ) aligned with the manufacturer’s values of 0.5 ng/L, 1.6 ng/L, and 2.5 ng/L, respectively. Passing-Bablok regression demonstrated good correlations between Atellica IM analyser with other systems; some minor deviations were observed. All results in healthy volunteers fell below the 99th percentile URL, and greater than 50% of each sex demonstrated values above the LoD. No interference was observed for biotin (≤ 1500 µg/L), but a slight bias at 5.0 g/L haemoglobin and 50 ng/L Tn was observed. TAT from was fast (mean time = 10.9 minutes) and reproducible (6%CV). Real-world analytical and TAT performance of the hs-TnI assay on the Atellica IM analyser make this assay fit for routine use in clinical laboratories

    Using transferrin saturation as a diagnostic criterion for iron deficiency: A systematic review

    No full text
    International audienceIron deficiency is the most common micronutrient deficiency in the world and represents a major challenge for public health, notably in terms of morbidity and mortality. It remains largely under-diagnosed due to the low level of exploration and the absence of international harmonization for biological tests and thresholds. We performed a systematic review of the literature using PubMed, which allowed us to identify 41 publications within the scope of this review. This analysis shows the benefit of using transferrin saturation in addition to ferritin, in the diagnosis of iron deficiency and even in first-line analysis for patients with chronic inflammatory diseases

    Ferroptosis in Liver Diseases: An Overview

    No full text
    Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia–reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer

    Iron Metabolism in Normal and Pathological Pregnancies and Fetal Consequences

    No full text
    Iron is required for energy production, DNA synthesis, and cell proliferation, mainly as a component of the prosthetic group in hemoproteins and as part of iron-sulfur clusters. Iron is also a critical component of hemoglobin and plays an important role in oxygen delivery. Imbalances in iron metabolism negatively affect these vital functions. As the crucial barrier between the fetus and the mother, the placenta plays a pivotal role in iron metabolism during pregnancy. Iron deficiency affects 1.2 billion individuals worldwide. Pregnant women are at high risk of developing or worsening iron deficiency. On the contrary, in frequent hemoglobin diseases, such as sickle-cell disease and thalassemia, iron overload is observed. Both iron deficiency and iron overload can affect neonatal development. This review aims to provide an update on our current knowledge on iron and heme metabolism in normal and pathological pregnancies. The main molecular actors in human placental iron metabolism are described, focusing on the impact of iron deficiency and hemoglobin diseases on the placenta, together with normal metabolism. Then, we discuss data concerning iron metabolism in frequent pathological pregnancies to complete the picture, focusing on the most frequent diseases
    corecore