6 research outputs found

    Offline time is quality time: comparing within-group self-disclosure in mobile messaging applications and face-to-face interactions

    Full text link
    In contrast to the prominent individualistic view on self-disclosure, this study focuses on self-disclosure in groups of prior acquaintances that both meet offline and communicate online. It compares within-group self-disclosure between offline face-to-face (FtF) interactions and online communication via mobile messaging applications (MMAs). An online-survey (N = 357) was conducted to test for differences between within-group self-disclosure online and offline across four dimensions (amount, depth, breadth, valence). The results show that there is more amount, more breadth and more depth for offline within-group self-disclosure, but it is less positively valenced than online within-group self-disclosure. Interestingly, the mere frequency of communication is higher in an MMA environment. In spite of the permanent availability of the online communication sphere, group members do not permanently disclose personal information to each other online. Thus, for within-group self-disclosure, offline time seems quality time

    Utility of different massive parallel sequencing platforms for mutation profiling in clinical samples and identification of pitfalls using FFPE tissue

    No full text
    In the growing field of personalised medicine, the analysis of numerous potential targets is becoming a challenge in terms of work load, tissue availability, as well as costs. The molecular analysis of non-small cell lung cancer (NSCLC) has shifted from the analysis of the epidermal growth factor receptor (EGFR) mutation status to the analysis of different gene regions, including resistance mutations or translocations. Massive parallel sequencing (MPS) allows rapid comprehensive mutation testing in routine molecular pathological diagnostics even on small formalin-fixed, paraffin-embedded (FFPE) biopsies. In this study, we compared and evaluated currently used MPS platforms for their application in routine pathological diagnostics. We initiated a first round-robin testing of 30 cases diagnosed with NSCLC and a known EGFR gene mutation status. In this study, three pathology institutes from Germany received FFPE tumour sections that had been individually processed. Fragment libraries were prepared by targeted multiplex PCR using institution-specific gene panels. Sequencing was carried out using three MPS systems: MiSeq (TM), GS Junior and PGM Ion Torrent (TM). In two institutes, data analysis was performed with the platform-specific software and the Integrative Genomics Viewer. In one institute, data analysis was carried out using an in-house software system. Of 30 samples, 26 were analysed by all institutes. Concerning the EGFR mutation status, concordance was found in 26 out of 26 samples. The analysis of a few samples failed due to poor DNA quality in alternating institutes. We found 100% concordance when comparing the results of the EGFR mutation status. A total of 38 additional mutations were identified in the 26 samples. In two samples, minor variants were found which could not be confirmed by qPCR. Other characteristic variants were identified as fixation artefacts by reanalyzing the respective sample by Sanger sequencing. Overall, the results of this study demonstrated good concordance in the detection of mutations using different MPS platforms. The failure with samples can be traced back to different DNA extraction systems and DNA quality. Unknown or ambiguous variations (transitions) need verification with another method, such as qPCR or Sanger sequencing

    EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial

    No full text
    The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany
    corecore