75 research outputs found

    Coexistence of high-bit-rate quantum key distribution and data on optical fiber

    Full text link
    Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.Comment: 7 pages, 5 figure

    Vector Coding Optical Wireless Links

    Get PDF
    The quasi-static nature of the optical wireless channel means that the channel state information (CSI) can be readily available at the transmitter and receiver prior to data transmission. This implies that electrically band-limited optical wireless communication (OWC) systems can make use of optimal channel partitioning or vector coding based multi-channel modulation (MCM) to achieve high throughput by mitigating the non-linearities arising from the optical and electrical channel. This paper proposes a pulse amplitude modulation (PAM) based DC-biased optical vector coding (DCO-VC) MCM scheme for OWC. The throughput performance of DCO-VC is evaluated and compared to the well known DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) over hybrid (line-of-sight and diffuse) and diffuse (non line-of-sight only) visible light communication (VLC) channels with additive white Gaussian noise. For the completeness of the VLC physical layer, the performance comparison is based on an uncoded and a forward error correction transmission mode using well-known convolutional codes with Viterbi decoder. The results show that the coded DCO-VC outperforms DCO-OFDM system by achieving up to 2 and 3 dB signal to noise ratio gains over hybrid and diffuse VLC channels, respectively

    Monolithic Directly-Modulated Multi-Wavelength- Channel GaInAsP/InP Micro-Ring Laser Array

    Get PDF
    Two directly-modulated GaInAsP/InP micro-rings with different radii vertically-coupled on a common bus are assessed for both independent and simultaneous operation. A device area <0.12mm^2 per microring allows the generation of 2λx1Gb/s WDM signals with 6nm wavelength separation. These show successful transmission over 25km of single-mode-fibre with < 0.2dB power penalty

    Transient response of ARROW VCSELs

    Get PDF

    Compact Vertically-Coupled Microring Laser Array Dual-Wavelength Source for Terahertz Mode Beating

    Get PDF
    corecore