25 research outputs found

    Lolium multiflorum germination and growth affected by virgin, naturally, and artificially aged high-density polyethylene microplastic and leachates

    Get PDF
    With the detection of microplastics in soil, coupled with the various sources continuously contributing to its delivery to and distribution in soils, understanding the effects of microplastics on plants are necessary. Plastics discarded in the environment continually degrade into micro- and nano-sizes, subsequently leaching hazardous chemicals with time. Not only time but also environmental factors related to the climate of the area where the plastic is degrading will contribute to the breakdown process. Thus, this study aimed to understand the phytotoxic effects of microplastic derived from a frequently discarded plastic item, i.e., high-density polyethylene soda bottle caps. The commonly occurring perennial Lolium multiflorum (Italian ryegrass) was exposed to microplastic derived from new and artificially aged bottle caps as well as bottle caps collected from the cities of Lahti, Finland and Gqeberha, South Africa. Additionally, leachates were prepared from these samples and used for exposure. Germination, root and shoot growth, and fresh weight were measured as indicators of adverse effects, and various growth parameters were calculated. Microplastic and leachates from new and Lahti collected bottle caps adversely affected the germination and growth of the plant, indicating that aging and environmental factors affect the phytotoxicity of plastics as environmental pollutants in soil.Peer reviewe

    An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils

    Get PDF
    The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (Peer reviewe

    Toxicity of binary mixtures of Cu, Cr and As to the earthworm Eisenia andrei

    Get PDF
    Chromated copper arsenate (CCA) mixtures were used in the past for wood preservation, leading to large scale soil contamination. This study aimed at contributing to the risk assessment of CCA-contaminated soils by assessing the toxicity of binary mixtures of copper, chromium and arsenic to the earthwormEisenia andreiin OECD artificial soil. Mixture effects were related to reference models of Concentration Addition (CA) and Independent Action (IA) using the MIXTOX model, with effects being related to total and available (H2O and 0.01 M CaCl(2)extractable) concentrations in the soil. Since only in mixtures with arsenic dose-related mortality occurred (LC(50)92.5 mg/kg dry soil), it was not possible to analyze the mixture effects on earthworm survival with the MIXTOX model. EC(50)s for effects of Cu, Cr and As on earthworm reproduction, based on total soil concentrations, were 154, 449 and 9.1 mg/kg dry soil, respectively. Effects of mixtures were mainly antagonistic when related to the CA model but additive related to the IA model. This was the case when mixture effects were based on total and H2O-extractable concentrations; when based on CaCl2-extractable concentrations effects mainly were additive related to the CA model except for the Cr-As mixture which acted antagonistically. These results suggest that the CCA components do interact leading to a reduced toxicity when present in a mixture.Peer reviewe

    Birch tar oil is an effective mollusc repellent: field and laboratory experiments using Arianta arbustorum (Gastropoda: Helicidae) and Arion lusitanicus (Gastropoda: Arionidae)

    Get PDF
    Populations of two molluscs, the land snail Arianta arbustorum and the Iberian slug Arion lusitanicus, have increased substantially in many places in the northern Fennoscandia in recent years. This has resulted in considerable aesthetic and economic damage to plants in home gardens and commercial nurseries. Birch tar oil (BTO), is a new biological plant protection product, and was tested against these molluscs. In this study we examined whether 2 types of BTO, used either alone, mixed together, or mixed with Vaseline®, could be applied as 1) a biological plant protection product for the control of land snails by direct topical spray application, 2) as a repellent against snails when painted on a Perspex® fence, and 3) as a repellent against slugs when smeared on pots containing Brassica pekinensis seedlings. Both the fences and the pots with seedlings were placed in each field with a high population of the target organism. When applied as a spray on snails, BTO did not act as a toxic pesticide but rendered the snails inactive for a period of several months. The BTO barriers were effective in repelling both snails and slugs. However, the repellent effect of BTO alone against the molluscs was short-term. Repeated treatments were required to keep the slugs away from the plants and we found that the interval between treatments should not exceed two weeks. A collar fastened around the rim of the pots, combined with the BTO treatment, did not give any additional benefit in hindering slugs from invading the plants. Most noticeably, the BTO+Vaseline® mixture prevented the land snails from passing over the treated fences for up to several months. The results of these experiments provide evidence that BTO, especially when mixed with Vaseline®, serves as an excellent long-term repellent against molluscs

    A multicomponent approach to using waste-derived biochar in biofiltration : A case study based on dissimilar types of waste

    Get PDF
    The environmental legislation and strict enforcement of environmental regulations are the tools effectively used for developing the market of materials for environmental protection technologies. Sustain ability criteria shift environmental engineering systems to more sustainable-material-based technologies. For carbon-based medium materials in biofiltration, this trend results in attempts to use biochar for biofiltration purposes. The paper presents the analysis of biochar properties based on the main criteria for biofiltration medium integrating the environmental quality properties of biochar, following the European Biochar Certificate guidelines. Three types of biochar produced from feedstock of highly popular and abundant types of waste are analysed. A multi component approach was applied to summarize the results. The lignocellulosic type of biochar was found to be more competitive for use as a biofiltration medium than the types of biochar with high ash or lignin content. (C) 2016 Elsevier Ltd. All rights reserved.Peer reviewe

    Case Study Comparing Effects of Microplastic Derived from Bottle Caps Collected in Two Cities on Triticum aestivum (Wheat)

    Get PDF
    As plastic has become an integral component of daily life, microplastic has become a ubiquitous, unavoidable constituent of nearly all ecosystems. Besides monitoring the amount and distribution of microplastic in the environment, it is necessary to understand the possible direct effects, especially toxicity and how it is affected by environmental factors where it is discarded. The present study investigated how microplastic derived from high-density polyethylene bottle caps collected in two climatically different cities, i.e., Singapore (tropical rainforest climate) and Lahti, Finland (continental climate), affected the essential agricultural grain crop, Triticum aestivum (L.). Wheat seedlings were exposed to microplastic derived from these collected bottle caps, as well as new and artificially aged caps, for seven days. Morphological parameters, such as root and shoot length and oxidative stress development, were measured. Exposure to microplastic derived from the caps resulted in reduced seedling root and shoot lengths compared to the controls, as well as enhanced lipid peroxidation and catalase activity. With all parameters tested, microplastic derived from Lahti bottle caps exhibited more severe effects than Singapore, which was similar to that elicited by new microplastic. The Singapore microplastic had possibly leached its toxic substances before collection due to accelerated degradation promoted by the prevailing warmer climate conditions

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general.Peer reviewe

    Enchytraeus crypticus Avoid Soil Spiked with Microplastic

    Get PDF
    Microplastics (MPs) of varying sizes are widespread pollutants in our environment. The general opinion is that the smaller the size, the more dangerous the MPs are due to enhanced uptake possibilities. It would be of considerably ecological significance to understand the response of biota to microplastic contamination both physically and physiologically. Here, we report on an area choice experiment (avoidance test) using Enchytraeus crypticus, in which we mixed different amounts of high-density polyethylene microplastic particles into the soil. In all experimental scenarios, more Enchytraeids moved to the unspiked sections or chose a lower MP-concentration. Worms in contact with MP exhibited an enhanced oxidative stress status, measured as the induced activity of the antioxidative enzymes catalase and glutathione S-transferase. As plastic polymers per se are nontoxic, the exposure time employed was too short for chemicals to leach from the microplastic, and as the microplastic particles used in these experiments were too large (4 mm) to be consumed by the Enchytraeids, the likely cause for the avoidance and oxidative stress could be linked to altered soil properties
    corecore