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Abstract
The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate
(CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia
andrei exposed to soils from a gradient of CCAwood preservative contamination near Hartola, Finland. In soils contaminated
with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination
kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with
equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and
body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1),
but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.
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Introduction

According to a report from the European Soil Data Centre of
the European Commission, the estimated number of potential-
ly contaminated sites in Europe is over 2.5 million. Metals
(37.3%) and mineral oil (33.7%) are the most frequent soil
contaminants across Europe (van Liedekerke et al. 2014). In

Finland, there are around 24,000 contaminated sites, which
include 880 sites used for wood salt impregnation and saw
mills (Pyy et al. 2013). Chromated copper arsenate (CCA)
was used for more than 60 years in Europe and the USA to
preserve wooden structures from moss growth and insect
damage (Leduc et al. 2008).

In Finland, the use of metal oxides in wood preservatives
began in 1950 with the application of Lahontuho K33
(Viitasaari1991). In Sweden, they were known as Boliden
K33, which became the most widely used CCA formulation.
K33 was marketed by many companies around the world
under various trade names (Richardson 1993). The CCA com-
pounds are divided into A, B, and C type compounds accord-
ing to the amount of arsenic, but they also differ in solubility
(Viitasaari 1991). Until the end of 1982, the CCAwood pre-
servatives used in Finland were of the type B compound. After
that, type C compounds were introduced. Until 2003, CCA
wood preservatives were the most popular in the wood im-
pregnation worldwide. At our study site in Finland, wood logs
were preserved with K-33.

CCA wood preservatives are effective because of the tox-
icity of copper and arsenic to fungi and insects (Lebow 1996).
However, they have been shown to accumulate in the envi-
ronment under or near CCA-treated wood (Stilwell and Gorny
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1997). Leaching of CCA preservatives into the environment
depends on weather conditions and soil characteristics
(Balasoiu et al. 2001; Stilwell and Gorny 1997). Reduction
of Cr(VI) to Cr(III) is the main driver of a series of reactions in
the fixation of CCA complexes, resulting in the insolubiliza-
tion of CCA. Fixation reactions reduce the leachability of Cu,
Cr, andAs into the environment but environmental factors like
pH and temperature may also affect leachability of these
metals (Hingston et al. 2001). The leached CCA metals are
expected to adsorb quickly to soil particle surfaces, but may be
desorbed into the soil solution after rainfall or irrigation events
(Leduc et al. 2008). CCA leaching generally increases with
the age of CCA handled timber (Katz and Salem 2005). As a
consequence, many terrestrial and aquatic ecosystems are con-
taminated with leachates of CCA-treated wood.

Little is known about the bioavailability of CCA metals in
mixtures, and therefore great uncertainty exists about their
potential risk in soils. Measures of bioavailability can be used
as a guideline for the risk assessment of soil contamination
(Peijnenburg et al. 1997, 1999). Bioavailability of metals is a
complicated issue as it depends on the metal itself, the ex-
posed biological species and its ability to regulate metal up-
take and excretion, and the environmental compartment where
the organism lives (Peijnenburg and Jager 2003).
Additionally, the organism’s size, receptor(s), specific patho-
physiological characteristics, the metal’s route of entry, the
duration and frequency of exposure, the dose and the exposure
matrix may also impact bioavailability (Allen et al. 2002). Soil
properties like pH (van Gestel and Hensbergen 1997), redox
potential (Masscheleyn et al. 1991), clay content (Lin and Puls
2000), Ca concentration, and organic matter content may af-
fect the bioavailability of metals, their kinetics of uptake and
elimination in organisms, and the development of body con-
centrations with time (Vijver et al. 2003). Since the toxicity of
metals depends on the concentration in the body, uptake and
elimination kinetics are important and relevant tools for
evaluating the bioavailability of metals.

Long-term contaminated sites may contain many contami-
nants forming complex mixtures. Metal mixture contamina-
tion is different from single metal contamination as different
metals may have different kinetics, which will lead to differ-
ences in metal concentration ratios in the body compared with
external concentrations in exposed organisms. In the mixtures,
metal concentration ratios in the body are crucial for determin-
ing and understanding toxicity.

The aim of this study was to determinate the bioavail-
ability of chromium, copper, and arsenic to earthworms
along a concentration gradient to provide a basis for the
ecotoxicological risk assessment of CCA-contaminated
field soils. Earthworms are a suitable organism for
uptake-elimination kinetic experiments because they have
direct contact with the soil and its different compart-
ments. They are also important organisms for soil

ecology and its systems (Peijnenburg et al. 1997). We
used OECD guideline 317 (OECD 2010) for determining
metal uptake and elimination kinetics in earthworms. Our
hypotheses were that the uptake kinetics in Eisenia
andrei are different for Cr, Cu, and As, and do provide
insight into the bioavailability of these metals in CCA-
contaminated soils.

Materials and methods

Study site

The study area was an old wood impregnation site located in
Hartola, Southern Finland. In an area measuring 100 m ×
150 m, K-33 liquid diluted with water was sprayed with pres-
sure into two impregnation tubes of 12 m × 30 cm and one of
16 m × 3.1 m. At the site, wood logs were preserved with
K-33, which contained 34.0% As(V)Oxide, 26.6% Cr2O3,
14.8% CuO, and 24.6% water. During the period 1958–
1966, approximately 2500wood logs were preserved per year,
using 8400 L K-33 liquid annually. After treatment, the wood
logs were dried in the area for 3 days. When finishing impreg-
nation actions in autumn, leftover wood impregnation liquid
was discarded by pouring onto the soil, leading to contamina-
tion of the soil and ground water. At the study site, the pseudo
total concentrations of CCAmetals in the soil (mg/kg) were as
follows: Cr 12.5–1592, As 10.1–2812, and Cu 5.1–79. In
Finland, the background levels and the range (mg/kg) for
Chromium, Arsenic, and Copper are 31 (6–170), 1 (0.1–25),
and 22 (5–110), respectively (Finnish Government decree
214/2007). A detailed description of the Hartola study site
has been given by Karjalainen et al. (2009).

Soil sampling

Humus soil for the experiment was collected from a 60-
year-old Norway spruce (Picea abies L.) stand of Oxalis-
Myrtillus site type (Cajander 1949) from Hartola, Southern
Finland (68°17 ′820 N/34°44′030 E). The study site
(100 m × 150 m) was divided into four sampling areas
based on a concentration gradient, being classified as high
(H), medium (M), low (L), and control (C) areas (Figure S1
in the Supporting Information). Pre-concentration analysis
for Cr, Cu, and As was done on site with a field-portable X-
ray fluorescence meter (XRF) (Karjalainen et al. 2009). In
each sampling area, five squares (1.5 m × 1.5 m) were laid
out from each of which two samples, each of 1 kg, were
collected and pooled together. The samples were taken
from the humus layer. The depth of the humus layer was
2.5 cm in the highly polluted area, 3.8 cm for medium,
4.1 cm for low, and 5.1 cm in the control area.
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Soil analyses

Soil water holding capacity (WHC) was determined following
ISO (1999). Organic matter content (OM) was determined as
loss on ignition at 550 °C for 4 h. Soil pH was measured from
H2O and 0.01 M CaCl2 extracts (soil to liquid ratio, 1:10;
shaken for 2 h at 200 rpm) with a SCHOTT pH meter, type
CG842. Soil moisture content was determined by drying soil
samples at 105 °C for 24 h. Particle size distribution was
determined using laser size grain analysis, which is based on
the forward scattering of monochromatic coherent light as
described by Konert and Vandenberghe (1997).

Uptake/elimination experiment

For the metal uptake and elimination experiment, earthworms
(Eisenia andrei) were exposed to contaminated soils from the
four test sites: high (H), medium (M), low (L), and control (C).
Each soil had six replicates per sampling time. One earthworm
was placed in a glass container containing 35–50 g of test soil
(ww). The earthworms were taken from a synchronized cul-
ture at the Vrije Universiteit, Amsterdam, The Netherlands.
Only adults with a well-developed clitellum were used.
Before starting exposures, the earthworms were acclimatized
in OECD artificial soil (OECD 1984) for 24 h at 20 ± 1 °C.
OECD artificial soil was used as a control. A small amount of
horse dung (2% of the dry soil mass) was mixed in with the
test soils for food for the earthworms. Soil moisture content
was adjusted to 50% of the WHC. The test containers were
loosely covered with a lid, and incubated in climate chambers
at 20 ± 1 °C with a light:dark cycle of 16/8 h.

In the uptake phase, six replicate earthworms were sampled
at days 0, 0.5, 1, 4, 8, 15, and 21. After 21 days, the remaining
earthworms were taken from their respective soils, rinsed with
water, and transferred to OECD artificial soil for the elimina-
tion phase. Similarly, during the elimination period, six repli-
cate earthworms were sampled at days 0.5, 1, 2, 4, 8, 15, and
21. Sampled earthworms were rinsed with water to remove
adhering soil particles, placed on moist filter paper to void
their gut for 24 h, weighed, frozen, and freeze-dried for metal
analysis.

Metal analysis

Pseudo total metal concentrations in the soils

About 500 mg (dw) soil was weighed into 50-mL plastic
bottles and 10 mL aqua regia (HCl:HNO3, 3:1) was added.
The acids (HCl 36.5–38.0% and HNO3 69.0–70.0%) were
supplied by J.T. Baker for trace metal analysis. After closing,
the bottles were placed in an ultrasonic bath (Transsonic 820/
H Elma®) for 3 × 3 min at a temperature of about 45–50 °C.
After sonification and cooling, the samples were filtered

(Whatman no. 41) into a 25-mL volumetric glass bottle, dilut-
ed with high purity ELGAwater to a volume of 25 mL, and
stored in plastic bottles for the analysis with Inductively
Coupled Plasma-Optical Emission Spectrometry (ICP-OES;
Perkin-Elmer Optima 4300DV). All equipment was rinsed
with acid before use. Reference materials for contaminated
soils, SRM 2710 and SRM 2711, both certified by the
National Institute of Standards and technology (NIST), were
included in the analysis. Recoveries from the certified refer-
ence sample SRM 2710 were 96% for As and 92% for Cu;
recovery of Cu from the reference material SRM 2711 was
96%. No certified reference values were given for Cr concen-
tration in the SRM 2710 sample. The procedure has been
described by Väisänen et al. (2002). Detection limits for pseu-
do total concentrations of Cr, Cu, and As were 0.3, 0.4, and
2 mg/kg dry soil.

Extractable metals

To determine available metal concentrations, the test soils
were extracted with H2O and 0.01 M CaCl2. About 5 g moist
test soil was extracted with 50 mL H2O or 50 mL 0.01 M
CaCl2 by shaking for 2 h at 200 rpm. After settling overnight,
pH was measured, and samples were 0.45-μm-filtered and
preserved with HNO3 for analyzing extractable metal concen-
trations (Smit et al. 1997) with ICP-OES. Detection limits for
0.01M CaCl2-extractable concentrations were 0.03, 0.04, and
0.2 mg/kg dry soil and for H2O-extractable, 0.08, 0.13, and
0.7 mg/kg dry soil, respectively.

Metal concentrations in Eisenia andrei

The earthworms were digested individually in 4 mL aqua
regia (3 HCl:1 HNO3). Earthworm samples were placed for
1 h in a water bath at 70–80 °C. After cooling, the extract was
filtered and diluted with high purity ELGAwater to a volume
of 25mL (Lukkari et al. 2004). The samples were analyzed for
metal concentrations by ICP-OES (Perkin-Elmer (Norwalk,
CT, USA) model Optima 4300 DV) as described by
Väisänen et al. (2002). A Scott-type double-pass spray cham-
ber and a cross-flow nebulizer were used throughout. The
determination of metal concentrations was performed using
default parameters of the instrument (nebulizer flow
0.6 L min−1, auxiliary gas flow 0.2 L min−1, plasma gas flow
15 L min−1, and plasma power of 1400 W). The wavelengths
with the axial plasma viewing used in the determination were
193.696 nm, 283.563 nm, and 324.752 nm for As, Cr, and Cu,
respectively. Quality control was performed by the analysis of
two certified reference materials, DOLT-4 Dogfish liver and
TORT-2 Lobster hepatopancreas. High recoveries were ob-
tained for all the elements of interest. The certified and mea-
sured concentrations (mg/kg) and recoveries of metals (%)
from the DOLT-4 Dogfish liver were as follows: As 9.66 ±

Environ Sci Pollut Res (2019) 26:15095–15104 15097



0.62, 7.75 ± 0.08, and 80.2; Cu 31.2 ± 1.1, 30.3 ± 0.4, and
97.1; Cr 1.4 (stated value, not certified), 1.4 ± 0.4, and 100.
The certified and measured concentrations (mg/kg) and metal
recoveries (%) from the TORT-2 Lobster hepatopancreas were
as follows: As 21.6 ± 1.8, 22.9 ± 0.3, and 105.8; Cu 106 ± 10,
97 ± 2, and 92, and Cr 0.77 ± 0.15, 1.0 ± 0.2, and 130,
respectively.

Kinetics model

A one-compartment model was applied to describe the uptake
(Eq. 1) and elimination (Eq. 2) kinetics of chromium, copper,
and arsenic in the earthworms exposed to the Hartola soils
(Atkins 1969).

Cworm ¼ C0 þ k1
k2

� Cexp1 � 1−e−k2t
� � ð1Þ

Cworm ¼ C0 þ k1
k2

� Cexp1 � 1−e−k2t
� �þ k1

k2
� Cexp1

� 1−e−k2 t−txð Þ
� �

ð2Þ

where Cworm is the internal copper/chromium/arsenic concen-
tration in the earthworms at time t (mg/kg dry body weight),
C0 is the initial (background) copper/chromium/arsenic con-
centration in the earthworms at t = 0 (mg/kg dry body weight),
k1 is the uptake rate constant (kg soil/kg earthworm/day), k2 is
the elimination rate constant (day−1), Cexp1 is the copper/chro-
mium/arsenic exposure concentration during the uptake phase
(mg/kg dry soil), t is the exposure time (days), and tx is the day
on which animals were transferred to clean OECD artificial
soil (day 21). Both Eqs. 1 and 2 were fitted together to obtain
single values for the uptake and for the elimination rate con-
stants. Microsoft Excel 2010 was used to fit the one-
compartment model to the data for each study site and metal,
and IBM SPSS Statistics 21 to estimate the standard errors
and other statistical parameters of the estimated uptake and
elimination rate constants. The bioaccumulation factor
(BAF) for the accumulation of the metals in E. andrei was
estimated using the following equation (Sharma et al. 2011):
BAF ¼ k1

k2

Results

The CCA-contaminated field soils from Hartola were acidic
with pHCaCl2 between 3.4 and 4.5 and pHH2O between 4.3 and
5.7 (Table 1). Organic matter contents (OM) were high, rang-
ing from 21 to 32%, and soils were sandy with low clay
content. Water holding capacity (WHC) of the study soils
was high, with 238–325%. Moisture contents ranged from
41.6 to 93.8%.

Pseudo total concentrations (mg/kg) of chromium and cop-
per in the high and medium contaminated areas were similar,
while they were low in the low contaminated and control areas
(Table 2). Total As concentration was highest in the high con-
taminated soil. Water and 0.01 M CaCl2 extractable metal
concentrations were below the detection limit for the control
and low contaminated soils. For Cr and As, water-extractable
concentrations in the high and medium contaminated soils
were slightly higher than the CaCl2 extractable concentra-
tions. For copper, the difference between water- and CaCl2-
extractable concentrations in these soils was small and not
consistent (Tables 2).

Earthworm survival was high during the 42-day experi-
mental period, with only 3 animals dying in the control (83
worms) and 2, 7, and 11 dead worms out of 83 in low, medi-
um, and high contaminated soils, respectively.

In the low contaminated soil, no uptake of chromium, cop-
per, and arsenic was seen, with earthworm body concentra-
tions remaining more or less constant at approximately 0.9,
7.7, and 22 mg/kg body weight, respectively throughout the
uptake and elimination phases (Fig. 1). In the medium and
high contaminated soils, chromium and copper showed very
fast uptake and elimination kinetics in the earthworms.
Equilibrium was reached within a day, and after transfer of
the earthworms to clean soil, Cr and Cu body concentrations
returned to the background level also within 1 day. Arsenic,
however, showed very slow uptake and elimination kinetics in
the earthworms exposed to the medium and high contaminat-
ed soil. Steady state was not reached within 21 days of expo-
sure (Fig. 1).

There was little difference between Cr and Cu uptake (k1)
and elimination (k2) rate constants for medium and high con-
taminated soils, and they were indicating very fast kinetics.
For As, k1 and k2 in both the high and medium contaminated
soi ls were very small , indicat ing slow kinet ics .
Bioaccumulation factors (BAF) were well below 0.1 for Cr
and Cu, but between 0.54 and 1.8 for As, and did not differ
much for the medium and high contaminated soils.

Calculating uptake rate constants (k1) based on water- or
CaCl2-extractable concentrations (Tables S1 and S2) did
slightly decrease the difference between medium and high
contaminated soils for Cr but not for Cu and As.

Discussion

Themain objective of this study was determining the bioavail-
ability of chromium (Cr), copper (Cu), and arsenic (As) to the
earthworm E. andrei along a gradient of metal pollution, ap-
plying a toxicokinetics approach. Test soils were taken from a
gradient of Cr, Cu, and As contamination in a Finish forest
field soil contaminated several decades with a chromated cop-
per arsenate (CCA) wood preservative. In an earlier study,
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Karjalainen et al. (2009) indicated that pollution levels in this
area may be hazardous to the terrestrial ecosystem. In the
present study, we found two different uptake-elimination pat-
terns in E. andrei.Uptake rate constant k1 and elimination rate
constant k2 were high indicating fast kinetics for Cu and Cr,
but were very low showing very slow kinetics for As. These
differences may be caused by differences in the bioavailability
of the metals and their metabolic routes in earthworms.

Metal availability

Variation of bioavailability and accumulation has been studied
for different chemicals and earthworm species and using dif-
ferent experimental designs and analytical platforms
(Spurgeon et al. 2011). These studies have shown a difference
in bioavailability between artificial soils (like OECD) and
field soils (Peijnenburg et al. 1999). Metals are more bioavail-
able in freshly spiked artificial soils than in field-contaminated
soils (Spurgeon and Hopkin 1995). Pseudo total concentra-
tions (mg/kg, dw) of Cu, Cr, and As in the medium and high
CCA field-contaminated soils (Table 2) were 6–8, 15–16, and
17–56 times higher than the Finnish lower limit values, re-
spectively. Although pseudo total metal concentrations were
high, similar to e.g., Hagner et al. (2017), this did not translate
into high available concentrations in H2O and 0.01 M CaCl2
extracts. This was expected because the field soil was contam-
inated decades ago. The metal contaminant pool requires time
to diffuse into micro or nanopores and to be absorbed into
organic matter and adsorbed onto soil particles (Allen et al.
2002). This aging process, which usually is nearly completed

within 1 year of spiking the metals, makes a direct and
straightforward comparison of metal bioavailability in
OECD artificial and field soils challenging (Peijnenburg
et al. 1999).

In this study, the bioavailability of Cu, Cr, andAsmetals and
their partitioning in the field-contaminated soils were influ-
enced by soil properties like soil pH, organic matter, and clay
content. The CCA-contaminated field soils were acidic
(pHCaCl2 3.4–4.5), which has influenced speciation and mobil-
ity of the metals present. Under acidic conditions, the toxic and
mobile Cr(VI) will be reduced to the stable and less toxic
Cr(III) (Kumpiene et al. 2008; Sivakumar and Subbhuraam
2005). In soil, copper is bound to organic matter. When pH
increases the sorption of the free Cu2+, ion on solid organic
matter increases (Degryse et al. 2009) and Cu also becomes
more strongly bound to oxide surfaces (Khaodhiar et al. 2000).
Peijnenburg et al. (1999) did not observe significant uptake of
arsenic in earthworms at pHCaCl2 < 6 and at pHCaCl2 > 6.75. At
low pH and high redox potential, As is mainly in the As(V)
form, but when pH increases and redox potential decreases,
As(III) is the dominant form in soils (Masscheleyn et al.
1991) and in earthworms (Lee and Kim 2013). Soil acidity
was found to be the most important solid-phase characteristic
modulating the availability of As and its sorption (Balasoiu
et al. 2001; Peijnenburg et al. 1999). All these studies support
our findings of low H2O- and 0.01 M CaCl2-extractable con-
centrations of Cr, Cu, and As in the acidic and high organic
CCA-contaminated field soils from Hartola.

Many studies have shown that metals bind to organic mat-
ter and, as a consequence, are not available for uptake. Cr, Cu,

Table 2 Mean (± SD) pseudo total, water, and 0.01 M CaCl2 extractable concentrations [mg/kg dry soil] of chromium (Cr), copper (Cu), and arsenic
(As) in the CCA-contaminated soils from Hartola, Finland, used for the toxicokinetics experiment with Eisenia andrei

Study site Pseudo total [mg/kg] (n = 37–39) H2O extractable [mg/kg] (n = 3) CaCl2 extractable [mg/kg] (n = 3)

Cr Cu As Cr Cu As Cr Cu As

Control (C) 5.34 ± 1.68 4.71 ± 1.06 6.12 ± 1.22 < 0.21 ± 0.11 0.20 ± 0.11 < < 3.54 ± 0.09

Low (L) 12.5 ± 10.6 5.14 ± 5.3 10.1 ± 5.5 < 0.19 ± 0.04 0.17 ± 0.03 < < 3.43 ± 0.11

Medium (M) 1590 ± 247 791 ± 140 850 ± 225 4.72 ± 0.38 2.95 ± 0.24 9.98 ± 0.62 0.84 ± 0.16 4.58 ± 0.23 7.67 ± 0.29

High (H) 1480 ± 355 642 ± 180 2810 ± 921 13.5 ± 0.33 6.23 ± 0.13 54.5 ± 1.94 2.55 ± 0.39 2.22 ± 0.26 20.8 ± 2.54

<, below detection limit

Table 1 Properties of the CCA-contaminated soils from Hartola, Finland. Shown are mean values with standard deviation; OM organic matter, WHC
water holding capacity

Site pHCaCl2

(n = 3)
pHH2O

(n = 3)
%OM
(n = 3)

WHC
(n = 10)

Moisture content
(%) (n = 5)

% clay (< 8 μm)
(n = 5)

% silt (8–64 μm)
(n = 5)

% sand (64–2000 μm)
(n = 5)

Control 3.39 ± 0.05 4.30 ± 0.10 30.8 ± 2.63 325 ± 77 49.6 ± 2.94 5.1 ± 1.6 11.1 ± 1.7 83.7 ± 3.3

Low 3.89 ± 0.01 4.95 ± 0.10 23.9 ± 6.62 271 ± 124 50.5 ± 9.62 4.1 ± 0.8 10.3 ± 0.8 85.6 ± 1.6

Medium 4.32 ± 0.07 5.53 ± 0.02 31.8 ± 4.23 277 ± 56 93.8 ± 11.6 4.8 ± 0.6 12.6 ± 1.6 82.6 ± 1.8

High 4.53 ± 0.08 5.68 ± 0.07 20.8 ± 5.50 238 ± 105 41.6 ± 11.2 3.1 ± 2.7 6.5 ± 1.7 90.4 ± 4.2
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and As all have high affinity for binding to soil organic matter
(Meharg et al. 1998; Peijnenburg et al. 1999; Marinussen et al.
1997; Speir et al. 1995). In this study, organic matter contents

(OM) were high, ranging between 21 and 32%, while the
Hartola soils were sandy with low clay content. Balasoiu
et al. (2001) concluded that Cu was bound to organic matter

Fig. 1 Uptake and elimination kinetics of chromium (left), copper
(middle), and arsenic (right) in earthworms (Eisenia andrei) exposed for
21 days to low (top), medium (middle), and high (bottom) CCA-
contaminated field soils from the site near Hartola, Finland, followed

by a 21-day elimination phase in clean OECD artificial soil. Lines show
the fit of a one-compartment model to the data (Eqs. 1 and 2). Table 3
shows the corresponding uptake and elimination rate constants.

Table 3 Kinetics parameters (± SE) for the uptake and elimination of
Cr, Cu, and As in the earthworm Eisenia andrei following exposure to
CCA field-contaminated soils from Hartola, Finland. Kinetics parameters
were derived by relating metal concentrations in the earthworms to pseu-
do total concentrations in the test soils. k1 is the uptake rate constant, k2

the elimination rate constant, and BAF is bioaccumulation factor. A one-
compartment model was used to estimate kinetics parameters, using Eq. 1
for uptake and Eq. 2 for elimination phase data. See Fig. 1 for the corre-
sponding data and model fits

Site k1 (kg soil/kg worm/day) k2 (day
−1) BAF

Cr Cu As Cr Cu As Cr Cu As

Low – – – – – – – – –

Medium 0.27 ± 0.68 0.19 ± 0.042 0.011 ± 0.0091 7.6 ± 19 2.2 ± 0.52 0.0062 ± 0.0048 0.036 0.086 1.8

High 0.71* 0.16 ± 0.043 0.0065 ± 0.00055 24.6* 2.4 ± 0.65 0.012 ± 0.0052 0.029 0.067 0.54

*Very large SE
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because of suitable reactive groups and retained by complex-
ation rather than ion exchange. Chromium partitioning to or-
ganic matter was similar to that of copper (Balasoiu et al.
2001). In high organic soils, Cr and Cu are present in less
mobile and less available forms (Balasoiu et al. 2001; Gupta
et al. 1996; Maiz et al. 2000). Also, As has high affinity for
binding to soil organic matter (Meharg et al. 1998). These
findings may explain the low H2O and CaCl2 extractable con-
centrations in our test soils (Table 2). In our test soils, the
available concentrations of Cr, Cu, and As were very low in
the low contaminated soil, and in general, less than 1% of the
metal was available in the medium and high contaminated
soils, except for the water extractability of As which was 1–
2%. The slightly higher metal availability in the high contam-
inated soil compared with the medium contaminated soil
(Table 2) can be attributed to the higher organic matter and
clay content of the latter. The fact that for Cr and As water-
extractable concentrations were higher than CaCl2-extractable
concentrations suggests that these elements were not present
as cations in the CCA-contaminated field soils.

Uptake—elimination kinetics of chromium
and copper

In the present study, differences in H2O or 0.01 M CaCl2
extractability did not translate into differences in uptake kinet-
ics in the earthworms. Cr and Cu accumulated very rapidly in
E. andrei and steady-state concentrations were reached within
1 day of exposure. Peijnenburg et al. (1999) found similar
patterns for Cr and Cu. Internal steady-state concentrations
(day 21) in E. andrei exposed to the medium and high
contaminated soils were 88.2 and 97.1 mg/kg dw,
respectively for Cu, and 106 and 63.6 mg/kg dw,
respectively for Cr. van Gestel et al. (1993) exposed
E. andrei for 3 weeks to Cr concentrations of 0, 10, 32, 100,
320, and 1000 mg/kg dry soil in freshly spiked OECD artifi-
cial soil and found tissue concentrations in the earthworms of
0.8–18 mg/kg dw. In Dutch field soils, containing total con-
centrations of 3.2–988 mg Cr/kg dry soil and 1.1–108 mg Cu/
kg dry soil, steady-state concentrations in E. andrei were
1.04–14.0 mg Cr/kg dw and 5.72–34.4 mg Cu/kg dw
(Peijnenburg et al. 1999). Following exposure to field-
contaminated soils from the UK, containing total concentra-
tions of 725 and 1732mgCu/kg dry soil, tissue concentrations
in Lumbricus rubellus were 44.1 and 85.3 mg Cu/kg dw
(Langdon et al. 2001). The latter findings are similar to the
values obtained in the present study, but the levels of Cr in
soils and E. andrei in the studies of van Gestel et al. (1993)
and Peijnenburg et al. (1999) are lower than in the present
study. The differences between studies can be explained by
differences in pH and organic matter content of the field soils
(Langdon et al. 2001; Peijnenburg et al. 1999), and the use of
(freshly spiked) artificial soil (van Gestel et al. 1993).

In the medium (M) and high (H) contaminated soils, fast
uptake kinetics of chromium and copper with fast elimination
rates were seen in the earthworm E. andrei. The absence of
clear differences between the two soils might be due to the fact
that these soils had very similar pseudo total metal
concentrations. Uptake rate constants k1 for Cr in medium
and high soils were 0.27 and 0.71 kg soil/kg worm/day,
respectively, and for Cu, 0.19 and 0.16 kg soil/kg worm/day,
respectively. Equilibrium was reached within a day and after
transfer of the earthworms to clean OECD soil, they reached
the background level also within 1 day. Nahmani et al. (2009)
found similar uptake rate constants k1 (0.16–0.57 kg soil/
kg worm/day) for Cu in different UK field soils. In our study,
very fast elimination of Cr and Cu from E. andrei occurred
with k2 = 7.6–24.6 and 2.2–2.4 day−1, respectively. These k2
values agree with the data of Peijnenburg et al. (1999),
Spurgeon and Hopkin (1999), and van Gestel et al. (1993).
Nahmani et al. (2009) found the opposite effect for the elim-
ination of Cu. Compared with their soils, our field soils had
higher organic matter contents and were more acidic.

Why are uptake and elimination patterns of Cu and Cr
similar? Cr may be mimicking the essential metal Cu. Cr also
is an essential nutrient playing a role in the release of insulin
from tissues when needed for the usage of sugars, proteins,
and fats (Shrivastava et al. 2002). In acidic environments, Cu
and Cr occur as cations (Cu2+ and Cr3+). Their size is similar
and they have very similar chemical characteristics. Both are
Lewis acids which bind strongly to organic matter forming
similar type organic ligands, which may explain why these
two metals have similar uptake and elimination patterns in
E. andrei like other essential metals. Fast uptake reaching
equilibrium within a few days for other essential metals like
Zn and non-equilibrium for non-essential metals were report-
ed by Spurgeon and Hopkin (1999). The metabolic routes of
copper and chromium, however, are different in earthworms.
In this study, the fast elimination may indicate that copper is
detoxified mainly by excretion, which is supported by
Spurgeon and Hopkin (1999). Copper is needed in biochem-
ical reactions as it is part of numerous enzymes (Fisker et al.
2013) transporting substances in cells and tissues but hardly
accumulating itself in earthworms (Kennette et al. 2002).
Earthworms can regulate copper (Fisker et al. 2011) using
metallothionein proteins. Cu itself is not so active in inducing
metallothionein-gene expression, but might need an induction
of the protein by other agents, like Cd, to facilitate its binding
to earthwormMTs. If metallothioneins are induced by Cd, the
Cu concentrations are higher in earthworms (Mariño et al.
1998). Chromium(VI) is accumulated inside the cell through
the same membrane channels used for the transfer of isoelec-
tric and isostructural anions, like SO4

2− and HPO4
2−.

Glutathione, which is present in high concentrations, plays
an important role in the intracellular metabolism of Cr(VI).
There are several mechanisms for Cr(VI) reduction to Cr(III)
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via intermediates like Cr(V) and Cr(IV) (Codd et al. 2001) by
Jurket cells (Shi et al. 1999). In the reduction process, super-
oxide radicals (·O2), H2O2, and hydroxyl (·OH) radicals, col-
lectively called oxygen species (ROS), play a major role as a
messenger for NF-kB activation in Jurket cells (Shi et al.
1999). Environmental concern is triggered by Cr(VI), which
is more mobile and more toxic than Cr(III) for Eisenia fetida
(Sivakumar and Subbhuraam 2005). In the present study, a
reduction from Cr(VI) to Cr(III) may have happened already
in the soils because of their high organic matter contents
(Speir et al. 1995).

The bioaccumulation factor (BAF) calculated to estimate
metal bioavailability in the different soils was low (< 0.1) for
Cr and Cu due to fast excretion from the earthworms. BAFs
for Cu in E. fetida exposed to different contaminated field
soils from UK were higher at 0.18–1.25 (Nahmani et al.
2009). Langdon et al. (2001) determined BAF for Cu accu-
mulation in L. rubellus exposed to two different soils in UK of
0.060 and 0.049, which are similar to the values found in the
present study. BAF values for Cr accumulation in E. andrei
were 0.031–0.047 when exposed to Cr in freshly spiked arti-
ficial soil (van Gestel et al. 1993). Also, these BAFs are sim-
ilar to the values measured in the present study.

Uptake—elimination kinetics of arsenic

In the low (L) contaminated field soil, no uptake of arsenic
was seen, with earthworm body concentrations remaining
more or less constant at approximately 22mg/kg bodyweight,
throughout the uptake and elimination phases. This matches
with the low availability of As in this soil seen from H2O and
CaCl2 extractions (Table 2). Very slow uptake and elimination
kinetics were seen in E. andrei upon exposure to the medium
(M) and high (H) contaminated Hartola field soils, and steady-
state was not reached after 21-day exposure. Similar uptake
patterns have been reported in field soil (Peijnenburg et al.
1999) and in artificial soils (Lee and Kim 2013). Langdon
et al. (2003a) found that L. rubellus eliminated arsenic from
their tissues over a 21-day experimental period, which differs
from our results. The difference between L. rubellus and
E. fetida/E. andrei may be due to fact that L. rubellus from
contaminated sites have developed tolerant to arsenic toxicity
(Langdon et al. 1999) by developing an efficient arsenic elim-
ination mechanism (Langdon et al. 2003a). Fisher and
Koszorus (1992) and Peijnenburg et al. (1999) found no As
elimination over an 8-week period in E. fetida, which agrees
with the absence of any As elimination in E. andrei in the
present study.

Uptake rate constants k1 values for As were 0.011 and
0.0065 kg soil/kg worm/day, respectively, which agrees with
the k1 of 0.0046 kg soil/kg worm/day reported by Peijnenburg
et al. (1999) for E. andrei exposed to different Dutch field
soils. Also, Lee and Kim (2013) found no equilibrium of As

uptake and elimination in E. fetidawithin 28-day exposure. In
the present study, elimination rate constants for As were
0.0062 day−1 for the medium site and 0.012 day−1 for the high
site. This slow elimination kinetics is supported by Lee and
Kim (2013) and Peijnenburg et al. (1999). As a consequence
of the slow elimination, steady-state was not reached within
21 days (Peijnenburg et al. 1999; Lee and Kim 2013), which is
in agreement with the results of the present study. González-
Alcaraz and van Gestel (2016), however, found that As body
concentration of E. andrei increased very fast (k1 =
1.10 kg soil/kg earthworm/day; 20 °C and 50%WHC),
reaching steady-state after 1–3 days of exposure of contami-
nated soils from a mine tailing. The elimination rate constant
k2 = 12.7 day−1 (20 °C and 50%WHC) was much higher than
in the present study. This fast kinetics of As is totally opposite
to our findings, and is probably due to the different soil types,
especially the high pHCaCl2 (6.04–7.44) and low organic mat-
ter contents (~ 1.5–4.3%) of the soils used in the study of
González-Alcaraz and van Gestel (2016).

Earthworms may take up arsenic mainly via the alimentary
route (Morgan et al. 1994; Langdon et al. 1999). In earthworm
tissues, As is sequestered as As-thiol complexes (Morgan
et al. 1994) while also other metal-chelating proteins,
metallothioneins (MTs), may be involved in As binding
(Langdon et al. 2005) causing its bioconcentration in earth-
worms (Lee and Kim 2013). Slow excretion of As from
E. andrei indicates sequestration in less-toxic forms without
elimination (Meharg et al. 1998). Fisher and Koszorus (1992)
concluded that As may have restricted ability for elimination
which also agrees with our results and may explain why As
accumulated to E. andrei in the present study.

The BAFs for As of 1.8 and 0.54 for the medium and high
sites, respectively, show that As is bioaccumulated by
E. andrei. Langdon et al. (2001) calculated a very low BAF,
suggesting that different earthworm species detoxified As in
different ways. Their field soils differed from this study in
having low organic matter contents (1.58–10.02%) and
pH(H2O) 4.71–7.18, while the history of As contamination in
the mining area has been very long and As speciation form
probably was different from our study. In the mining area,
arsenic is accumulated as an arsenobetaine form (Langdon
et al. 2005) which is produced by the earthworms upon metab-
olism of arsenate (Langdon et al. 2003b). The BAF of 0.64
reported by Peijnenburg et al. (1999) for E. andrei exposed to
Dutch field soils based on steady state concentrations is similar
to our data, suggesting As speciation was similar to our soils.

Conclusion

Little is known about the bioavailability of the metals in the
CCA mixture, leading to great uncertainty about the potential
risk of CCA-contaminated soils. In this study, we used a
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toxicokinetics approach to assess the bioavailability of copper,
chromium, and arsenic to earthworms (Eisenia andrei) in
CCA-contaminated field soils. All three metals were available
at the site, but the uptake and elimination patterns in E. andrei
of Cr, Cu, and As were quite different. Uptake and elimination
for the essential metals Cr and Cu were very fast with equilib-
rium being reached within 1 day, probably due to active reg-
ulation of the body concentrations by the earthworms. For As,
uptake and elimination kinetics were very slow leading to
relatively high bioaccumulation factors (BAF), suggesting po-
tential risk of metal biomagnification in the food chain. When
assessing the ecological risk of CCA-contaminated soils in
Hartola, Finland, focus should especially be on the high bio-
availability of As, and consider its possible transfer in the food
chain. Further research is needed to study the consequences of
exposure to multiple metals at this site.
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