15 research outputs found

    Investigating the In Vivo Antimicrobial Activity of a Self-Assembling Peptide Hydrogel Using a Galleria mellonella Infection Model

    Get PDF
    Technological advances in protein biochemistry now enable researchers to modify the structure of peptides to enable them to possess self-assembling properties, forming hydrogels at low concentrations. Peptides can be altered further to provide multifunctional characteristics, for example, to demonstrate antimicrobial properties. The aim of this article is to investigate the in vivo toxicity and antimicrobial properties of a low molecular weight (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFKK-OH) peptide hydrogel using an innovative waxworm (Galleria mellonella) model, as an alternative to mammalian/vertebrate testing. NapFFKK-OH hydrogels did not demonstrate any observable in vivo toxicity or death in G. mellonella larvae over 5 days at concentrations studied (≤2% w/v). A dose-dependent log10 reduction in viable (CFU/mL) Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria implicated in nosocomial infections was observed over 72 h. NapFFKK-OH was especially effective against in vivo infection models of S. aureus with a significant 4.4 log10 CFU/mL reduction in viable bacteria at 2% w/v after 72 h. Our results show G. mellonella to be a useful model for preliminary determination of in vivo toxicity and antimicrobial efficacy profiles of novel nanomaterials, including peptide-based hydrogels. This contributes to the 3R principles of animal testing, reduction, refinement, and replacement. The results also show NapFFKK-OH to be a promising alternative to standardly employed antimicrobials with the potential to be utilized as a novel therapeutic in the treatment and prevention of hospital infections

    Ireland’s unseen majority – microbial diversity of the seabed

    Get PDF
    Despite their size, prokaryote (bacteria and archaea) biomass is estimated to represent between 15 and 30% of total living biomass1,2. Prokaryotes play major roles in marine ecosystems and in global biogeochemical cycling3,4. Molecular phylogenetic approaches have revolutionised microbiology and have revealed that the complexity of microbial life is orders of magnitude greater than previous estimates based on cultivation-based approaches5. This highlights how little we currently know about the microbial world and the clear potential of this vast untapped resource for human application. Here we present the first in-depth analysis of microbial community diversity and composition in the Irish Sea. The western Irish Sea is characterised by distinct hydrographic conditions, resulting in summer stratified offshore deeper waters and settling of fine mud, while well-mixed waters and coarser sediment type dominate in the south and coastal regions. We wished to assess whether these factors play a role in prokaryote abundance and diversity

    Biostratigraphic Evidence Relating to the Age-Old Question of Hannibal's Invasion of Italy, II: Chemical Biomarkers and Microbial Signatures

    Get PDF
    Open access article. Creative Commons Attribution 4.0 International License (CC BY 4.0) appliesAs discussed in Part I, a large accumulation of mammalian faeces at the mire site in the upper Guil Valley near Mt. Viso, dated to 2168 cal 14C yr., provides the first evidence of the passage of substantial but indeterminate numbers of mammals within the time frame of the Punic invasion of Italia. Specialized organic biomarkers bound up in a highly convoluted and bioturbated bed constitute an unusual anomaly in a histosol comprised of fibric and hemist horizons that are usually expected to display horizontal bedding. The presence of deoxycholic acid and ethylcoprostanol derived from faecal matter, coupled with high relative numbers of Clostridia 16S rRNA genes, suggests a substantial accumulation of mammalian faeces at the site over 2000 years ago. The results reported here constitute the first chemical and biological evidence of the passage of large numbers of mammals, possibly indicating the route of the Hannibalic army at this time. Combined with the geological analysis reported in Part I, these data provide a background supporting the need for further historical archaeological exploration in this area.Ye

    Biostratigraphic Evidence Relating to the Age-Old Question of Hannibal's Invasion of Italy, I: History and Geological Reconstruction

    Get PDF
    Controversy over the alpine route that Hannibal of Carthage followed from the Rhône Basin into Italia has raged amongst classicists and ancient historians for over two millennia. The motivation for identifying the route taken by the Punic Army through the Alps lies in its potential for identifying sites of historical archaeological significance and for the resolution of one of history's most enduring quandaries. Here, we present stratigraphic, geochemical and microbiological evidence recovered from an alluvial floodplain mire located below the Col de la Traversette (~3000 m asl—above sea level) on the French/Italian border that potentially identifies the invasion route as the one originally proposed by Sir Gavin de Beer (de Beer 1974). The dated layer is termed the MAD bed (mass animal deposition) based on disrupted bedding, greatly increased organic carbon and key/specialized biological components/compounds, the latter reported in Part II of this paper. We propose that the highly abnormal churned up (bioturbated) bed was contaminated by the passage of Hannibal's animals, possibly thousands, feeding and watering at the site, during the early stage of Hannibal's invasion of Italia (218 bc)
    corecore