30 research outputs found

    Measuring Learning Gains in Chemical Education: A Comparison of Two Methods

    Get PDF
    Evaluating the effect of a pedagogical innovation is often done by looking for a significant difference in a content measure using a pre−post design. While this approach provides valuable information regarding the presence or absence of an effect, it is limited in providing details about the nature of the effect. A measure of the magnitude of the pre−post change, commonly called learning gain, could provide this additional information to chemical education researchers. In this paper, we compare two methods of measuring learning gains using data from large-scale administrations of the Chemical Concepts Inventory at four universities. The intent of this study is to compare various measures of learning gain, not to contrast the teaching effectiveness at the four universities. In this gain analysis, we introduce a method based on Rasch modeling and discuss the advantages offered by this type of analysis over more commonly used measures of learning gain

    Electron Affinity of Chlorine Dioxide

    Get PDF
    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 ± 0.10 eV was found by bracketing between the electron affinities of HS° and SF4 as a lower limit and that of NO2 as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the C102/C102- couple and a Gibbs hydration energy identical with that of SO2-

    PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas

    Get PDF
    We have used a novel variant of the human oestrogen receptor (ER)-positive MCF-7 cell line, TMX2-28, as a model to study breast cancer. TMX2-28 cells show no detectable levels of mRNA or protein expression for the ER and express basal cytokeratins (CKs) 5, 14, and 17. cDNA microarray comparison between TMX2-28 and its parent cell line, MCF-7, identified 1402 differentially expressed transcripts, one of which was, phospholipase D1 (PLD1). Using real-time RT–PCR, we confirmed that PLD1 mRNA levels are 10-fold higher in TMX2-28 cells than in MCF-7 cells. We next examined PLD1 expression in human breast carcinomas. Phospholipase D1 mRNA levels were higher in breast tumours that expressed high-mRNA levels of basal CKs 5 and/or 17, but PLD1 mRNA levels were not significantly higher in ER-negative tumours. Phospholipase D1 protein was overexpressed in 10 of 42 (24%) breast tumours examined by IHC. Phospholipase D1 was overexpressed in 6 of 31 ER-positive tumours and 4 of 11 ER-negative tumours. Phospholipase D1 was overexpressed in three of the four tumours that showed high CK5/17 expression. Five PLD1-positive tumours were negative for phospho-Akt expression, but positive for phospho-mammalian target of rapamycin (mTOR) expression. The other five PLD1-positive breast tumours showed positive expression for phospho-Akt; however, only two of these cases were positive for phospho-mTOR. In this study, we report that PLD1 and phospho-mTOR are coexpressed in a subset of phospho-Akt-negative breast carcinomas

    Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    Get PDF
    BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations

    Clarity on Cronbach’s Alpha Use

    No full text
    The Cronbach’s alpha (α) statistic is regularly reported in science education studies. However, recent reviews have noted that it is not well-understood. Therefore, this commentary provides additional clarity regarding the language used when describing and interpreting alpha and other estimates of reliability
    corecore