426 research outputs found

    Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living

    Get PDF
    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the 3-dimensional trajectories of gulls flying along a built up coastline, and used computation fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment

    Wind field and sex constrain the flight speeds of central-place foraging albatrosses

    Get PDF
    By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their colonies, these and time costs vary with relative wind direction. This causes albatrosses in some areas to route provisioning trips to avoid headwind flight, potentially limiting habitat accessibility during the breeding season. In addition, because female albatrosses have lower wing loadings than males, it has been argued that they are better adapted to flight in light winds, leading to sexual segregation of foraging areas. We used satellite telemetry and immersion logger data to quantify the effects of relative wind speed, sex, breeding stage, and trip stage on the ground speeds (Vg) of four species of Southern Ocean albatrosses breeding at South Georgia. Vg was linearly related to the wind speed component in the direction of flight (Vwf), its effect being greatest on Wandering Albatrosses Diomedea exulans, followed by Black-browed Albatrosses Thalassarche melanophrys, Light-mantled Sooty Albatrosses Phoebatria palpebrata, and Gray-headed Albatrosses T. chrysostoma. Ground speeds at Vwf = 0 were similar to airspeeds predicted by aerodynamic theory and were higher in males than in females. However, we found no evidence that this led to sexual segregation, as males and females experienced comparable wind speeds during foraging trips. Black-browed, Gray-headed, and Light-mantled Sooty Albatrosses did not engage in direct, uninterrupted bouts of flight on moonless nights, but Wandering Albatrosses attained comparable Vg night and day, regardless of lunar phase. Relative flight direction was more important in determining Vg than absolute wind speed. When birds were less constrained in the middle stage of foraging trips, all species flew predominantly across the wind. However, in some instances, commuting birds encountered headwinds during outward trips and tail winds on their return, with the result that Vg was 1.0–3.4 m/s faster during return trips. This, we hypothesize, could result from constraints imposed by the location of prey resources relative to the colony at South Georgia or could represent an energy optimization strategy

    Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species

    Get PDF
    Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats

    Immature gannets follow adults in commuting flocks providing a potential mechanism for social learning

    Get PDF
    Group travel is a familiar phenomenon among birds but the causes of this mode of movement are often unclear. For example, flocking flight may reduce flight costs, enhance predator avoidance or increase foraging efficiency. In addition, naive individuals may also follow older, more experienced conspecifics as a learning strategy. However, younger birds may be slower than adults so biomechanical and social effects on flock structure may be difficult to separate. Gannets are wide‐ranging (100s–1000s km) colonial seabirds that often travel in V or echelon‐shaped flocks. Tracking suggests that breeding gannets use memory to return repeatedly to prey patches 10s–100s km wide but it is unclear how these are initially discovered. Public information gained at the colony or by following conspecifics has been hypothesised to play a role, especially during early life. Here, we address two hypotheses: 1) flocking reduces flight costs and 2) young gannets follow older ones in order to locate prey. To do so, we recorded flocks of northern gannets commuting to and from a large colony and passing locations offshore and used a biomechanical model to test for age differences in flight speeds. Consistent with the aerodynamic hypothesis, returning flocks were significantly larger than departing flocks, while, consistent with the information gathering hypothesis, immatures travelled in flocks more frequently than adults and these flocks were more likely to be led by adults than expected by chance. Immatures did not systematically occupy the last position in flocks and had similar theoretical airspeeds to adults, making it unlikely that they follow, rather than lead, for biomechanical reasons. We therefore conclude that while gannets are likely to travel in flocks in part to reduce flight costs, the positions of immatures in those flocks may result in a flow of information from adults to immatures, potentially leading to social learning

    Social eavesdropping allows for a more risky gliding strategy by thermal-soaring birds

    Get PDF
    Vultures are thought to form networks in the sky, with individuals monitoring the movements of others to gain up-to-date information on resource availability. While it is recognised that social information facilitates the search for carrion, how this facilitates the search for updrafts, another critical resource, remains unknown. In theory, birds could use information on updraft availability to modulate their flight speed, increasing their airspeed when informed on updraft location. In addition, the stylised circling behaviour associated with thermal soaring is likely to provide social cues on updraft availability for any bird operating in the surrounding area. We equipped five Gyps vultures with GPS and airspeed loggers to quantify the movements of birds flying in the same airspace. Birds that were socially informed on updraft availability immediately adopted higher airspeeds on entering the inter-thermal glide; a strategy that would be risky if birds were relying on personal information alone. This was embedded within a broader pattern of a reduction in airspeed (~3 m/s) through the glide, likely reflecting the need for low speed to sense and turn into the next thermal. Overall, this demonstrates, (i) the complexity of factors affecting speed selection over fine temporal scales, and (ii) that Gyps vultures respond to social information on the occurrence of energy in the aerial environment, which may reduce uncertainty in their movement decisions

    Energy expenditure during flight in relation to body mass: effects of natural increases in mass and artificial load in Rose Coloured Starlings

    Get PDF
    Rose Coloured Starlings (Sturnus roseus) flew repeatedly for several hours in a wind tunnel while undergoing spontaneous variation in body mass. The treatments were as follows: flying unrestrained (U), with a control harness of 1.2% of their body mass (C), or with a harness of 7.4% of their body mass, which was either applied immediately before the flight (LS) or at least 9 days in advance (LL). Energy expenditure during flight (ef in W) was measured with the Doubly Labelled Water method. Flight costs in LS and LL were not significantly different and therefore were pooled (L). The harness itself did not affect ef, i.e. U and C flights were not different. ef was allometrically related with body mass m (in g). The slopes were not significantly different between the treatments, but ef was increased by 5.4% in L compared to C flights (log10(ef) = 0.050 + 0.47 × log10(m) for C, and log10(ef) = 0.073 + 0.47 × log10(m) for L). The difference in ef between C, LS and LL was best explained by taking the transported mass mtransp (in g) instead of m into account (log10(ef) = −0.08 + 0.54 × log10(mtransp)). Flight costs increased to a lesser extent than expected from interspecific allometric comparison or aerodynamic theory, regardless of whether the increase in mass occurred naturally or artificially. We did not observe an effect of treatment on breast muscle size and wingbeat frequency. We propose that the relatively low costs at a high mass are rather a consequence of immediate adjustments in physiology and/or flight behaviour than of long-term adaptations

    The Evolutionary Pathway to Obligate Scavenging in Gyps Vultures

    Get PDF
    The evolutionary pathway to obligate scavenging in Gyps vultures remains unclear. We propose that communal roosting plays a central role in setting up the information transfer network critical for obligate scavengers in ephemeral environments and that the formation of a flotilla-like foraging group is a likely strategy for foraging Gyps vultures. Using a spatial, individual-based, optimisation model we find that the communal roost is critical for establishing the information network that enables information transfer owing to the spatial-concentration of foragers close to the roost. There is also strong selection pressure for grouping behaviour owing to the importance of maintaining network integrity and hence information transfer during foraging. We present a simple mechanism for grouping, common in many animal species, which has the added implication that it negates the requirement for roost-centric information transfer. The formation of a flotilla-like foraging group also improves foraging efficiency through the reduction of overlapping search paths. Finally, we highlight the importance of consideration of information transfer mechanisms in order to maximise the success of vulture reintroduction programmes
    corecore