43 research outputs found

    Viruses: Friends and Foes

    Get PDF
    In this chapter, we will review how viruses can be used to positively affect joints and cartilage of their hosts. Many viruses are arthrogenic, and cause persistent and debilitating arthritis. Even those viruses that are not typically arthrogenic can also cause bone lesions as secondary pathogenesis. Some of these foes include members of the alphaviruses, like chikungunya and Ross River viruses, the rubiviruses, such as rubella, and erythoparvoviruses, like parvovirus B19. Some more uncommon viruses, which can occasionally have detrimental effects on their hosts’ joints, include herpes simplex virus, varicella zoster, mumps, human cytomegalovirus, avian orthoreovirus, and caprine arthritis-encephalitis virus. Despite some viruses having negative impacts on cartilage and joints, others have been used as an effective means of gene therapy for bone and cartilage repair. We will take an in-depth look at the current therapeutic strategies for treating arthritis using various viral vectors

    Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen

    Get PDF
    Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines

    Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy

    Get PDF
    Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults

    Canine Distemper Virus Uses both the Anterograde and the Hematogenous Pathway for Neuroinvasion

    No full text
    Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses

    Disease Duration Determines Canine Distemper Virus Neurovirulence▿

    No full text
    The Morbillivirus hemagglutinin (H) protein mediates attachment to the target cell. To evaluate its contribution to canine distemper virus neurovirulence, we exchanged the H proteins of the wild-type strains 5804P and A75 and assessed the pathogenesis of the chimeric viruses in ferrets. Both strains are lethal to ferrets; however, 5804P causes a 2-week disease without neurological signs, whereas A75 is associated with a longer disease course and neurological involvement. We observed that both H proteins supported neuroinvasion and the subsequent development of clinical neurological signs if given enough time, demonstrating that disease duration is the main neurovirulence determinant

    Pathways Activated by Infected and Bystander Chondrocytes in Response to Ross River Virus Infection

    No full text
    Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP−). We found that whereas GFP+ and GFP− populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells

    PG545 treatment reduces RRV-induced elevations of AST, ALT with secondary lymphoid organ alterations in C57BL/6 mice.

    No full text
    Recently the anti-viral effects of prophylactic treatment with the low-molecular-weight heparan sulfate mimetic PG545 in Ross River virus (RRV) infected mice were reported. We further investigated the related, transient pathophysiology of PG545 drug treatment in RRV-infected and mock-infected PG545-treated mice. PG545 treatment resulted in mild lethargy and piloerection, on days after the drug administration. Mice were treated with two or three doses of PG545 within a ten-day period and were subsequently culled at peak disease or at disease resolution. The treatment responses of the spleen and liver were assessed through histology, flow cytometry, gene arrays and serum biochemistry. Microscopy showed an expanded red pulp in the spleen following either two or three treatments with PG545. The red pulp expansion was further demonstrated by the proliferation of megakaryocytes and erythrocyte precursors within the spleen. In addition, flow cytometry and gene array analyses revealed a reduction of lymphocytes within the spleens of PG545-treated mice. Previously unreported, RRV-induced elevations of aspartate aminotransferase (AST) and alanine transaminase (ALT) enzymes and creatinine were also noted in the RRV-infected mice. However, PG545 only reduced AST and ALT levels but not the creatinine levels in infected mice during treatment. Mice treated with three doses of PG545 also showed hepatosplenomegaly and anaemia, which were reversed upon discontinuation of the treatment. In summary, this study demonstrates that dose and frequency related haemopoietic pathophysiology such as hepatosplenomegaly and anaemia, occurred in C57BL/6 mice treated with PG545. However, this effect was reversible once drug administration is terminated

    Infectious Chikungunya Virus in the saliva of mice, monkeys and humans

    Get PDF
    Chikungunya virus (CHIKV) is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/-) mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities

    Chondrocytes Contribute to Alphaviral Disease Pathogenesis as a Source of Virus Replication and Soluble Factor Production

    Get PDF
    Arthritogenic alphavirus infections often result in debilitating musculoskeletal disorders that affect the joints, muscle, and bone. In order to evaluate the infection profile of primary human skeletal muscle and chondrocyte cells to Ross River virus (RRV) in vitro, cells were infected at a multiplicity of infection (MOI) of 1 over a period of two days. Viral titers were determined by plaque assay and cytokine expression by Bio-Plex® assays using the supernatants harvested. Gene expression studies were conducted using total RNA isolated from cells. Firstly, we show that RRV RNA is detected in chondrocytes from infected mice in vivo. Both human primary skeletal muscle and chondrocyte cells are able to support productive RRV infection in vitro. We also report the production of soluble host factors including the upregulation of heparanase (HPSE) and inflammatory host factors such as interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), RANTES (regulated on activation, normal T cell expressed and secreted), interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α), which are also present during clinical disease in humans. Our study is the first to demonstrate that human chondrocyte cells are permissive to RRV infection, support the production of infectious virus, and produce soluble factors including HPSE, which may contribute to joint degradation and the pathogenesis of disease

    Effective cutaneous vaccination using an inactivated chikungunya virus vaccine delivered by Foroderm

    No full text
    Foroderm is a new cutaneous delivery technology that uses high-aspect ratio, cylindrical silica microparticles, that are massaged into the skin using a 3D-printed microtextured applicator, in order to deliver payloads across the epidermis. Herein we show that this technology is effective for delivery of a non-adjuvanted, inactivated, whole-virus chikungunya virus vaccine in mice, with minimal post-vaccination skin reactions. A single topical Foroderm-based vaccination induced T cell, Th1 cytokine and antibody responses, which provided complete protection against viraemia and disease after challenge with chikungunya virus. Foroderm vaccination was shown to deliver fluorescent, virus-sized beads across the epidermis, with beads subsequently detected in draining lymph nodes. Foroderm vaccination also stimulated the egress of MHC II+ antigen presenting cells from the skin. Foroderm thus has potential as a simple, cheap, effective, generic, needle-free technology for topical delivery of vaccines
    corecore