7 research outputs found

    Objective method for measuring the macular pigment optical density in the eye

    Get PDF
    Macular pigment is a yellowish pigment of purely dietary origin, which is thought to have a protective role in the retina. Recently, it was linked to age-related macular degeneration and improved visual function. In this work, we present a method and a corresponding optical instrument for the rapid measurement of its optical density. The method is based on fundus reflectometry and features a photodetector for the measurement of reflectance at different wavelengths and retinal locations. The method has been tested against a commercially available instrument on a group of healthy volunteers and has shown good correlation. The proposed instrument can serve as a rapid, non-midriatic, low-cost tool for the measurement of macular pigment optical density

    Performance of a differential contrast sensitivity method to measure intraocular scattering

    Get PDF
    Increased intraocular scatter degrades quality of vision, especially in the presence of glare sources. Standard tests, such as visual acuity, are not well suited to capture this condition. There are specific methods to measure intraocular scatter, but require dedicated instruments. In this work, we propose a method to estimate the amount of scatter by combining to sequential measurements of the contrast sensitivity function for two conditions, with and without a glare source. We applied the approach in a group of young subjects with no know ocular pathology fitted with photographic diffusing filters. The straylight estimates were compared with those provided by two alternative techniques, one based on the compensation comparison method and the other the optical integration. The results obtained with the three approaches were in a good agreement, demonstrating the feasibility of the proposed method

    Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe

    Get PDF
    Glaciers worldwide are shrinking at an accelerated rate as the climate changes in response to anthropogenic influence. While increasing air temperature is the main factor behind glacier mass and volume loss, variable patterns of precipitation distribution also play a role, though these are not as well understood. Furthermore, while the response of surface glaciers (from large polar ice sheets to small alpine glaciers) to climatic changes is well documented and continuously monitored, little to nothing is known about how cave glaciers (perennial ice accumulations in rock-hosted caves) react to atmospheric warming. In this context, we present here the response of cave and surface glaciers in SE Europe to the extreme precipitation events occurring between May and July 2019 in SE Europe. Surface glaciers in the northern Balkan Peninsula lost between 17 % and 19 % of their total area, while cave glaciers in Croatia, Greece, Romania and Slovenia lost ice at levels higher than any recorded by instrumental observations during the past decades. The melting was likely the result of large amounts of warm water delivered directly to the surface of the glaciers, leading to rapid reduction in the area of surface glaciers and the thickness of cave glaciers. As climate models predict that such extreme precipitation events are set to increase in frequency and intensity, the presence of cave glaciers in SE Europe and the paleoclimatic information they host may be lost in the near future. Moreover, the same projected continuous warming and increase in precipitation extremes could pose an additional threat to the alpine glaciers in southern Europe, resulting in faster-than-predicted melting

    In vitro effect of corneal collagen cross-linking on corneal hydration properties and stiffness.

    No full text
    The purpose of this study is to evaluate in-vitro the immediate effect of corneal collagen cross-linking (CXL) on corneal hydration and stiffness. Forty-two corneal buttons from freshly enucleated porcine eyes were immersed in riboflavin 0.1% in dextran 20% dilution for 3 h in order for their hydration to reach equilibrium. Corneal buttons where divided into two groups; the first group was stored in dark conditions while the other group was irradiated with UV radiation (370 nm) for 30 min to simulate CXL according to the clinically applied protocol. After irradiation, all corneas were immersed in dextran 20% solution for 3 additional hours. Subsequently, each button underwent weighing, thickness measurement, and was mounted in a special device for the measurement of force versus deformation by compression. Finally, all corneal buttons were dehydrated for 48 h in a desiccating oven set at 62 °C and weighed again to obtain their dry mass. Hydration (%) of each button was calculated. Mean corneal hydration in the irradiated and the non-irradiated group of corneas was 69.8 and 72.2%, respectively (p < 0.001). Differences in thickness and compressibility were not statistically significant. Thickness and hydration were positively correlated (Pearson's r = 0.714, p < 0.001). CXL causes corneal dehydration that can be detected immediately after the procedure. This phenomenon may contribute to increased mechanical stiffness of the cornea. A change in stiffness by means of compressibility could not be detected in porcine corneas
    corecore