285 research outputs found
Improvement of the 3 thermal conductivity measurement technique at nanoscale
The reduction of the thermal conductivity in nanostructures opens up the
possibility of exploiting for thermoelectric purposes also materials such as
silicon, which are cheap, available and sustainable but with a high thermal
conductivity in their bulk form. The development of thermoelectric devices
based on these innovative materials requires reliable techniques for the
measurement of thermal conductivity on a nanometric scale. The approximations
introduced by conventional techniques for thermal conductivity measurements can
lead to unreliable results when applied to nanostructures, because heaters and
temperature sensors needed for the measurement cannot have a negligible size,
and therefore perturb the result. In this paper we focus on the 3
technique, applied to the thermal conductivity measurement of suspended silicon
nanomembranes. To overcome the approximations introduced by conventional
analytical models used for the interpretation of the 3 data, we propose
to use a numerical solution, performed by means of finite element modeling, of
the thermal and electrical transport equations. An excellent fit of the
experimental data will be presented, discussed, and compared with an analytical
model
Primary Subcutaneous B-cell Lymphoma : Case Report and Literature Review
Primary cutaneous B-cell lymphomas are defined as malignant B-cell proliferations presenting with cutaneous involvement alone and no evidence of extracutaneous manifestations when complete staging has been performed. It has been shown that the infiltrate in some cases could involve the underlying subcutaneous tissues, but primary localization in this compartment has been rarely reported. We describe here the case of a 53-year-old woman who noticed a nodular lesion on the left shoulder that rapidly enlarged in a few months. The histological and immunophenotypical features were compatible with a subcutaneous B-cell lymphoma. The tumoural mass was confined predominantly to the subcutaneous compartment, as confirmed by computed tomography. No other tumour localizations were found. Thus, primary B-cell lymphoma of the subcutis was diagnosed. We report a review of the literature indicating that B-cell lymphomas that are primarily localized to the subcutaneous tissue represent a very rare modality of presentation with a biological behaviour different from conventional cutaneous B-cell lymphoma
Interaction of glutathione transferase from horse erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with two thiol groups of the dimeric horse erythrocyte glutathione transferase at pH 5.0, with strong inactivation reversible on dithiothreitol treatment. The inactivation kinetic follows a biphasic pattern, similar to that caused by other thiol reagents as recently reported. Both S-methylglutathione and 1-chloro-2,4-dinitrobenzene protect the enzyme from inactivation. Analysis of the reactive SH group-containing peptide gives the sequence Ala-Ser-Cys-Leu-Tyr, identical with that of the peptide that contains the reactive cysteine 47 of the human placental transferase. In the presence of glutathione, the enzyme is not inactivated by this reagent, but it catalyzes its conjugation to glutathione. At higher pH values, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with 2 tyrosines/dimer and lysines, as well as with cysteines. Reaction with lysine seems essentially without effect on activity; whether the reactive tyrosines are important for activity could not be determined using this reagent only. However, 2 tyrosines among the 4 that are nitrated by tetranitro-methane are important for activity
Electrostatic Control of the Thermoelectric Figure of Merit in Ion-Gated Nanotransistors
Semiconductor nanostructures have raised much hope for the implementation of high-performance thermoelectric generators. Indeed, they are expected to make available reduced thermal conductivity without a heavy trade-off on electrical conductivity, a key requirement to optimize the thermoelectric figure of merit. Here, a novel nanodevice architecture is presented in which ionic liquids are employed as thermally-insulating gate dielectrics. These devices allow the field-effect control of electrical transport in suspended semiconducting nanowires in which thermal conductivity can be simultaneously measured using an all-electrical setup. The resulting experimental data on electrical and thermal transport properties taken on individual nanodevices can be combined to extract ZT, guide device optimization and dynamical tuning of the thermoelectric properties
Programmed cell death 4 (PDCD4) as a novel prognostic marker for papillary thyroid carcinoma
Background: The primary goal of papillary thyroid cancer (PTC) management was to stratify patients at pre- and post-surgical level to identify the small proportion of cases with potentially aggressive disease. Purpose: The aim of our study is to evaluate the possible role of programmed cell death 4 (PDCD4) and BRAF status as prognostic markers in PTC. Patients and methods: We investigate programmed cell death 4 (PDCD4) immunohistochemical expression in 125 consecutive PTCs with median follow-up of 75.3 months (range, 15\u201398 months) to verify the possible correlation between BRAF status and correlate the classical clinicopathological prognostic factors and PTC outcome with PDCD4 expression. To further support the data, miR-21 expression was tested (by quantitative real-time PCR and in situ hybridization) in a different series of 30 cases (15 PTCs BRAFwt and 15 PTCs BRAFV600E). Moreover, we validated our results using TGCA thyroid carcinoma dataset. Results: We found that 59.8% of the patients showed low-grade PDCD4 nuclear expression and low-grade expression correlated with BRAF V600E. Compared with BRAF 15 wild-type tissue samples, a significant miR-21 up-regulation was associated with BRAF V600E mutations. Lowgrade PDCD4 resulted, and was associated with aggressive histological variants, higher cancer size, extra-thyroidal extension, multifocality, lymph-node metastasis and lymph nodal ratio at the diagnosis. Concerning the outcome, the low-grade PDCD4 expression correlated at univariate and multivariate analysis, with lower levels of recurrence-free survival rate (RFS) and with poor outcome. Moreover, there was significant association between BRAF V600E patients with PDCD4 nuclear loss and lower RFS, whilet here was significant association between BRAF wild-type patients with PDCD4 nuclear expression and better outcome. Conclusion: These results showed that PDCD4 could predict PTC outcome and that the sum of PDCD4 and BRAF alterations increases the prognostic power of BRAF mutation alone
Papillary Thyroid Carcinoma: Molecular Distinction by MicroRNA Profiling
Papillary thyroid carcinoma (PTC) is a miscellaneous disease with a variety of histological variants, each with its own mutational profile, and clinical and prognostic characteristics. Identification of microRNA (miRNA) expression profiles represents an important benchmark for understanding the molecular mechanisms underlying the biological behavior of these unique PTC subtypes in order that they be better characterized. We considered a series of 35 PTC samples with a histological diagnosis of either hobnail (17 cases) or classical variant (nine cases) and with a specific BRAF p.K601E mutation (nine cases). We determined the overall miRNA expression profile with NanoString technology, and both quantitative reverse transcription–PCR and in situ hybridization were used to confirm selected miRNAs. The miRNA signature was found to consistently differentiate specific histotypes and mutational profiles. In contrast to the BRAF p.K601E mutation and classic PTCs, three miRNAs (miR-21-5p, miR-146b-5p, and miR-205-5p) were substantially overexpressed in the hobnail variant. The current study found that different miRNA signature profiles were linked to unique histological variants and BRAF mutations in PTC. Further studies focusing on the downstream pathogenetic functions of mRNAs in thyroid neoplasms are warranted
Operation of an optoelectronic crossbar switch containing a terabit-per-second free-space optical interconnect
The experimental operation of a terabit-per-second scale optoelectronic connection to a silicon very-large-scale-integrated circuit is described. A demonstrator system, in the form of an optoelectronic crossbar switch, has been constructed as a technology test bed. The assembly and testing of the components making up the system, including a flip-chipped InGaAs-GaAs optical interface chip, are reported. Using optical inputs to the electronic switching chip, single-channel routing of data through the system at the design rate of 250 Mb/s (without internal fan-out) was achieved. With 4000 optical inputs, this corresponds to a potential aggregate data input of a terabit per second into the single 14.6 /spl times/ 15.6 mm CMOS chip. In addition 50-Mb/s data rates were switched utilizing the full internal optical fan-out included in the system to complete the required connectivity. This simultaneous input of data across the chip corresponds to an aggregate data input of 0.2 Tb/s. The experimental system also utilized optical distribution of clock signals across the CMOS chip
- …