11 research outputs found

    Bacillus atrophaeus inactivated spores as a potential adjuvant for veterinary rabies vaccine

    Get PDF
    Rabies is a viral encephalitis, nearly always fatal, but preventable through vaccines. Rabid animal bite is the prime transmission act, while veterinary vaccination is one of the best strategies for rabies general prevention. Aluminum compounds and saponin are the commercial adjuvants used for this vaccine nowadays. Nevertheless, aluminum compounds can provoke undesired side effects and saponin has a narrow activity range without toxicity. B. atrophaeus inactivated spores (BAIS), with or without saponin, were then used as an alternative to boost the inactivated rabies virus response. BAIS was as effective as saponin in augmenting antibody titers, but combination of both adjuvants doubled the titers raised by them individually. The combined adjuvant formulation maintained viability for 21 months when stored at 4-8 degrees C. Overall, BAIS was demonstrated as a viable alternative to commercial adjuvants, while its combination with saponin resulted in even higher vaccine potency with good stability. (C) 2012 Elsevier Ltd. All rights reserved.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Butantan InstituteButantan Institut

    Effect of Polyethylene Glycol on the Thermal Stability of Green Fluorescent Protein

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010261252256Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Effect of polyethylene glycol on the thermal stability of green fluorescent protein

    No full text
    Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70–95°C. Thermal stability was expressed in decimal reduction time. It was observed that the D‐values obtained were almost constant for temperatures of 85, 90, and 95°C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75°C, PEG 600 and 4,000 g/mol stabilized GFP261252256CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão tempolyethylene glycol protein stabilit

    Citrate and Phosphate Influence on Green Fluorescent Protein Thermal Stability

    No full text
    Protein structure and function can be regulated by no specific interactions, such as ionic interactions in the presence of salts. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. The aim of this study was to evaluate the thermal stability of GFP in the presence of different salts at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were higher in the presence of citrate and phosphate, when compared with that obtained in their absence, indicating that these salts stabilized the protein against thermal denaturation. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 269-272, 2011Coordination for Higher Level Graduates Improvement (Capes)National Council for Scientific and Technological Development (CNPq)State of Sao Paulo Research Foundation (Fapesp

    Choice of sterilizing/disinfecting agent: determination of the Decimal ReductionTime (D-Value)

    Get PDF
    Efforts to diminish the transmission of infections include programs in which disinfectants play a crucial role. Hospital surfaces and medical devices are potential sources of cross contamination, and each instrument, surface or area in a health care unit can be responsible for spread of infection. The decimal reduction time was used to study and compare the behavior of selected strains of microorganisms. The highest D-values for various bacteria were obtained for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) - E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min). The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations shows that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasize the importance and need to develop routine and novel programs to evaluate product utility.<br>Esforços para diminuir o risco de transmissões de infecções incluem programas nos quais os desinfetantes desempenham papel crucial. As superfícies de materiais médico-hospitalares, se não estiverem diretamente ligados à transmissão de doenças, podem contribuir, potencialmente, para uma contaminação cruzada secundária. Cada instrumento ou superfície do estabelecimento do ambiente de saúde que entra em contato com um paciente é um disseminador potencial de infecção. Para estudar e comparar o comportamento dos microrganismos selecionados foram realizados ensaios de determinação do tempo de redução decimal. Os maiores valores D determinados, foram: (i) 0,1% dicloroisocianurato de sódio (NaDCC) (pH 7.0) - E. coli e A. calcoaceticus (D = 5,9 min); (ii) hipoclorito de sódio (pH 7,0) à 0,025% para B. stearothermophilus (D = 24 min), E. coli e E. cloacae (D = 7,5 min); e à 0,05% para B. stearothermophilus (D = 9,4 min) e E. coli (D = 6,1 min). Este estudo estabelece que as suspensões estudadas são indicação da eficácia de desinfecção recomendada pela legislação, mas os resultados podem variar de produto para produto. Para desinfecção de mãos clorexidina pode ser utilizada, pois apresentou valores D baixos. Para desinfecção de nível intermediário de equipamentos e instrumentos recomenda-se a utilização de NaDCC, devido à estabilidade e baixo efeito corrosivo para equipamentos e materiais. Glutaraldeído, apesar de muito aceito para processos esterilizantes, tem eficácia comparável a soluções de formaldeído

    Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents

    Get PDF
    Due to the growing number of outbreaks of infection in hospital and nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. Validating the effectiveness of decontamination and disinfection is an important and often challenging task. In order to study and compare the behavior of selected microorganisms, they were submitted to minimal inhibitory concentration (MIC). The MIC intervals, which reduced bacteria populations over 6 log10, were: 59 to 156 mg/L of quaternary ammonium compounds (QACs); 63 to 10000 mg/L of chlorhexidine; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs) and 469 to 2500 mg/L of hydrogen peroxide. Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus showed resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens.<br>Devido ao número crescente de surtos de infecção hospitalar, torna-se proeminente o estabelecimento de um programa de sanitização que liste os agentes químicos a serem empregados e o modo de aplicação mais efetivo. Validação da eficácia de descontaminação é uma tarefa ao mesmo tempo importante e desafiadora. Para estudar e comparar o comportamento dos microrganismos selecionados foram realizados ensaios de concentração inibitória mínima (CIM). A CIM capaz de reduzir o bioburden inicial (>6 log10) foi: 59 - 156 mg/L de quartenários de amônia; 63 - 10000 mg/L de clorexidina, 1375 - 3250 mg/mL de glutaraldeído, 39 - 246 mg/L de formaldeído, 43750 - 87500 mg/L de etanol 1250 - 6250 mg/L de PVPI, 150 - 4491 mg/L de compostos liberadores de cloro e 469 -2500 mg/L de peróxido de hidrogênio
    corecore