176 research outputs found

    Uniqueness and monotonicity of solutions for fractional equations with a gradient term

    Get PDF
    In this paper, we consider the following fractional equation with a gradient term su(x) = f(x, u(x), ∇u(x)), in a bounded domain and the upper half space. Firstly, we prove the monotonicity and uniqueness of solutions to the fractional equation in a bounded domain by the sliding method. In order to obtain maximum principle on unbounded domain, we need to estimate the singular integrals define the fractional Laplacians along a sequence of approximate maximum points by using a generalized average inequality. Then we prove monotonicity and uniqueness of solutions to fractional equation in Rn + by the sliding method. In order to solve the difficulties caused by the gradient term, some new techniques are developed. The paper may be considered as an extension of Berestycki and Nirenberg [J. Geom. Phys. 5(1988), 237–275]

    Inhibition of foot-and-mouth disease virus replication in vitro and in vivo by small interfering RNA

    Get PDF
    By using bioinformatics computer programs, all foot-and-mouth disease virus (FMDV) genome sequences in public-domain databases were analyzed. Based on the results of homology analysis, 2 specific small interfering RNA (siRNA) targeting homogenous 3D and 2B1 regions of 7 serotypes of FMDV were prepared and 2 siRNA-expression vectors, pSi-FMD2 and pSi-FMD3, were constructed. The siRNA-expressing vectors were used to test the ability of siRNAs to inhibit virus replication in baby hamster kidney (BHK-21) cells and suckling mice, a commonly used small animal model. The results demonstrated that transfection of BHK-21 cells with siRNA-expressing plasmids significantly weakened the cytopathic effect (CPE). Moreover, BHK-21 cells transiently transfected with short hairpin RNA (shRNA)-expressing plasmids were specifically resistant to the infection of the FMDV serotypes A, O, and Asia I and this the antiviral effects persisted for almost 48 hours. We measured the viral titers, the 50% tissue culture infective dose (TCID50) in cells transfected with anti-FMDV siRNAs was found to be lower than that of the control cells. Furthermore, subcutaneous injection of siRNA-expressing plasmids in the neck of the suckling mice made them less susceptible to infection with O, and Asia I serotypes of FMDV

    Transient Activation of Autophagy via Sox2-Mediated Suppression of mTOR Is an Important Early Step in Reprogramming to Pluripotency

    Get PDF
    SummaryAutophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Here we show that autophagy is required for reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). Our data indicate that mammalian target of rapamycin (mTOR) is downregulated by Sox2 at an early stage of iPSC generation and that this transient downregulation of mTOR is required for reprogramming to take place. In the absence of Sox2, mTOR remains at a high level and inhibits autophagy. Mechanistically, Sox2 binds to a repressive region on the mTOR promoter and recruits the NuRD complex to mediate transcriptional repression. We also detected enhanced autophagy at the four- to eight-cell stage of embryonic development, and a similar Sox2 and mTOR-mediated regulatory pathway seems to operate in this context as well. Thus, our findings reveal Sox2-dependent temporal regulation of autophagy as a key step in cellular reprogramming processes

    Research on Effective Methods of laboratory Safety Education for college students

    Get PDF
    Safety is the primary condition for laboratory work. University laboratories are important places for scientific research, and safety education in university laboratories is a key measure to implement the source management of laboratory safety, which requires multiple measures and comprehensive implementation[1] .Research has found that local university laboratory safety education has problems such as insufficient ideological attention, weak sustainability of safety education, improper educational methods, and insufficient teaching staff. Policy suggestions have been put forward to ensure the safe operation of local university laboratories by emphasizing and systematically thinking about the layout of laboratory safety education, optimizing educational methods, and strengthening various guarantees

    Transcriptomic analysis reveals the molecular mechanisms underlying osteoclast differentiation in the estrogen-deficient pullets

    Get PDF
    Several previous reports have suggested that estrogen (E2) is a vital signal responsible for the reg-ulation of skeletal homeostasis and bone remodeling in mammals. E2 could efficiently accelerate the growth of medullary bone in pullets during sexual maturity. Fur-thermore, the low E2 level can strengthen the mechanical bone functions in female hens. However, mechanistic studies to describe the effects of E2 on bone in pullets during the initiation of the puberty period are remaining elusive. Therefore, the aim of this study was to explore the effect of inhibiting E2 biosynthesis on the biomechani-cal properties and its molecular mechanism during sexual maturity of pullets. In this study, a total of 90 Hy-line Sonia pullets with comparable body weight at 13 wk of age were selected and categorized into 2 separate groups. Daily, 0.5 mg/4 mL of letrozole (LZ) was orally adminis-tered to the treatment (TRT) group and 4 mL of saline to the control (CON) group of pullets for 6 wk. Com-pared with the CON group, a lower plasma E2 level was observed in the TRT group. Furthermore, plasma P, Gla protein (BGP), and 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3) levels were markedly suppressed, whereas the plasma alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels were signifi-cantly elevated. Moreover, the cortical bone thickness and breaking strength of the tibia and femur, the bone mineral density of the humerus, and the bone mineral content of the humerus as well as the femur were increased significantly. The expression levels of 340 dif-ferentially expressed genes (DEGs) differed signifi-cantly between the CON and TRT group in the tibia at 19 wk of age. Among them, 32 genes were up-regulated, whereas 308 were down-regulated in the TRT group. The variations in candidate genes associated with oste-oclast differentiation and cell adhesion may indicate that LZ inhibits E2 biosynthesis, consequently, reduces osteoclast differentiation by suppressing inter-cellular communication and cells attaching to extracellular matrix components. Taken together, the present study demonstrated that inhibiting E2 synthesis during sex-ual maturity of pullets decreased osteoclast differentia-tion and considerably enhanced bone quality

    The Pattern of Adipose Tissue Accumulation during Early Infancy Provides an Environment for the Development of Dengue Hemorrhagic Fever

    Get PDF
    BACKGROUND: Dengue is the most prevalent arthropod-borne viral illness in humans with half of the world\u27s population at risk. During early infancy, severe dengue can develop after a primary dengue virus infection. There has been a clinical observation that severe dengue during the first year of life is seen only in chubby infants. METHODOLOGY/PRINCIPAL FINDINGS: We examined the associations between the development of severe dengue and adipose tissue accumulation patterns during the first year of life in a prospective observational clinical study of infants and dengue virus infections. We found that adipose tissue contains two potential targets for dengue virus infection and production- adipocytes and adipose tissue macrophages. During the first year of life, total body adiposity and visceral adipose tissue stores were at their highest levels in early infancy. Early infancy was also characterized by a relative decrease in alternatively activated (anti-inflammatory) macrophages, and a relative increase in circulating pro-inflammatory cytokines. CONCLUSIONS/SIGNIFICANCE: The data has been used to propose a model where the adipose tissue accumulation pattern and pro-inflammatory environment during early infancy provide the conditions for the potential development of severe dengue in immune-susceptible infants

    Habitat Use and Activity Patterns of Mammals and Birds in Relation to Temperature and Vegetation Cover in the Alpine Ecosystem of Southwestern China with Camera-Trapping Monitoring

    Get PDF
    The high-altitude ecosystem of the Tibetan Plateau in China is a biodiversity hotspot that provides unique habitats for endemic and relict species along an altitudinal gradient at the eastern edge. Acquiring biodiversity information in this area, where the average altitude is over 4000 m, has been difficult but has been aided by recent developments in non-invasive technology, including infrared-triggered camera trapping. We used camera trapping to acquire a substantial number of photographic wildlife records in Wolong National Nature Reserve, Sichuan, China, from 2013 to 2016. We collected information of the habitat surrounding the observation sites, resulting in a dataset covering 37 species and 12 environmental factors. We performed a multivariate statistical analysis to discern the dominant environmental factors and cluster the mammals and birds of the ecosystem in order to examine environmental factors contributing to the species’ relative abundance. Species were generalized into three main types, i.e., cold-resistant, phyllophilic, and thermophilic, according to the identified key environmental drivers (i.e., temperature and vegetation) for their abundances. The mammal species with the highest relative abundance were bharal (Pseudois nayaur), Moupin pika (Ochotona thibetana), and Himalayan marmot (Marmota himalayana). The bird species with highest relative abundance were snow partridge (Lerwa lerwa), plain mountain finch (Leucosticte nemoricola), Chinese monal (Lophophorus lhuysii), and alpine accentor (Prunella collaris)
    • …
    corecore