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SUMMARY

Autophagy is an essential cellular mechanism that
degrades cytoplasmic proteins and organelles to
recycle their components. Here we show that auto-
phagy is required for reprogramming of somatic cells
to form induced pluripotent stem cells (iPSCs). Our
data indicate that mammalian target of rapamycin
(mTOR) is downregulated by Sox2 at an early stage
of iPSC generation and that this transient down-
regulation of mTOR is required for reprogramming
to take place. In the absence of Sox2, mTOR remains
at a high level and inhibits autophagy. Mechanis-
tically, Sox2 binds to a repressive region on the
mTOR promoter and recruits the NuRD complex to
mediate transcriptional repression.We also detected
enhanced autophagy at the four- to eight-cell stage
of embryonic development, and a similar Sox2 and
mTOR-mediated regulatory pathway seems to oper-
ate in this context as well. Thus, our findings reveal
Sox2-dependent temporal regulation of autophagy
as a key step in cellular reprogramming processes.

INTRODUCTION

Macroautophagy (hereafter referred to as autophagy) is an evolu-

tionarily conserved process that degrades cytoplasmic proteins

and organelles to recycle cellular components for cell survival

and tissue homeostasis (He and Klionsky, 2009; Kundu and

Thompson, 2008). Via double-membraned autophagosomes,

long-lived proteins or unwanted organelles are hydrolyzed, and

amino acids can be reused for cell renovation (Mizushima and

Komatsu, 2011; Mizushima and Levine, 2010). Autophagy pro-

vides a recycling system that plays a key role in cellular homeo-

stasis (Mizushima and Komatsu, 2011), tumor suppression

(Wanget al., 2012a), antigen processing (Nedjic et al., 2008), anti-

neurodegeneration (Lee et al., 2010), and embryonic develop-

ment (Mizushima and Levine, 2010). However, it is not yet known

whether autophagy is involved in cellular reprogramming.

Somatic cell reprogramming involves epigenetic modification,

changes in gene expression, protein degradation, and protein

synthesis. Reprogramming resets differentiated cells to a plurip-

otent state and can be achieved by nuclear transfer, cell fusion,
Cell
or transduction of certain transcription factors (Yamanaka and

Blau, 2010). Originally, four core transcriptional factors (Oct4,

Sox2, Klf4 and c-Myc, termed OSKM) were identified as being

able to convert differentiated fibroblasts into induced pluripotent

stem cells (iPSCs) (Takahashi et al., 2007; Takahashi and Yama-

naka, 2006; Yu et al., 2007). Subsequently, various methodo-

logical changes were made to improve efficiency and reduce

carcinogenesis risk during iPSC induction (Yamanaka, 2012).

Despite the remarkable progress in reprogramming technology,

the underlying molecular mechanisms remain largely elusive.

Recently, several reports showed that epigenetic modification

starts at an early stage of cell reprogramming, initiating rear-

rangement of gene expression profiles (Doege et al., 2012; Gu

et al., 2011; Koche et al., 2011). Genome-wide analyses and

in-depth quantitative proteomics reveal that during the first

3 days of reprogramming, multiple protein profile changes occur

in a highly coordinated fashion (Buganim et al., 2012; Golipour

et al., 2012; Polo et al., 2012), suggesting that there may be

relationships between epigenetic modifications and protein

degradation and synthesis. Here we show that autophagy is

essential for cell reprogramming. Mechanistically, we show

that Sox2 recruits the nucleosome remodeling and deacetylase

(NuRD) complex to repress mTOR expression and promote

cellular reprogramming through induction of autophagy.
RESULTS

Autophagy Is Required for iPSC Generation
To examine the role of autophagy in somatic cell reprogram-

ming, we generated Atg5+/+ and Atg5�/� mouse embryonic

fibroblasts (MEFs) containing drug-inducible OSKM factors

(Carey et al., 2010) (referred to as 4F2A MEFs hereafter). Atg5

plays a key role in autophagosome formation (Sakoh-Nakato-

gawa et al., 2013). We found that 3 weeks after initiating culture

in embryonic stem cell (ESC) media containing doxycycline,

iPSC colonies formed from Atg5+/+ 4F2A MEFs, but not from

Atg5�/� 4F2A MEFs (Figure 1A), despite comparable expres-

sion of the OSKM factors (Figure S1A available online). The

iPSCs generated from Atg5+/+ 4F2A MEFs expressed pluripo-

tency markers (Figure 1A and Figure S1B) and were able to

form teratomas containing cells of all three germ layers (Fig-

ure 1B). Atg3 and Atg7 are also required for autophagosome

formation (Weidberg et al., 2011). We also found that depletion

of Atg3 or Atg7 impaired autophagy and abrogated iPSC forma-

tion (Figures S1C and S1D). Restoration of Atg3 or Atg7 into
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Figure 1. Autophagy Is Essential for iPSC

Generation

(A) Atg5 deficiency impairs iPSC formation.

Atg5+/+ or Atg5�/� MEFs carrying drug-inducible

OSKM factors (hereinafter referred to as 4F2A

MEFs) were cultured in ESC media containing

2 mg/ml doxycycline for 3 weeks and detected for

alkaline phosphatase (AP) activity (upper panel)

or stained with anti-SSEA-1 antibody (lower

panel). Colony numbers per 104 cells were

calculated and shown as mean ± SD. ***p <

0.001.

(B) iPSCs from Atg5+/+, but not Atg5�/�; 4F2A

MEFs, can form teratomas. Atg5+/+ or Atg5�/�;
4F2A MEFs treated as above were harvested and

subcutaneously injected into NOD-SCID mice.

One month later, teratomas were collected for

H&E staining. EN, endoderm; ME, mesoderm; EC.

ectoderm. Scale bar, 200 mm.

(C) Autophagy in iPSC formation. GFP-LC3; 4F2A

MEFs were treated with doxycycline for the indi-

cated days and immunostained by anti-Sox2

antibody. Nuclei were visualized by DAPI. GFP-

LC3 dots per cell were calculated and shown as

mean ± SD. **p < 0.01; ***p < 0.001. Scale bar,

10 mm.

(D) Autophagic flux during iPSC generation. WT

4F2A MEFs were treated with doxycycline for the

indicated days and harvested for immunoblotting.

(E) Autophagosomal structures appear during

iPSC generation. WT 4F2A MEFs were cultured in

doxycycline-contained ESC media and autopha-

gosomes were analyzed by electron microscopy

and shown as mean ± SD. **p < 0.01; ***p < 0.001.

Red arrowhead indicates autophagosome. Scale

bar, 500 nm.

(F) Autophagy is enhanced at the four- to

eight-cell stage during embryonic development.

Embryos at the indicated stages from GFP-LC3

transgenic mice were isolated, and cultured in

OSKM media with or without 20 nM Bafilomycin

A1 (BafA1) for 4 hr, and visualized by confocal

microscopy. Scale bar, 20 mm.

(G) Rapamycin promotes reprogramming of embryos. Embryos were isolated at embryo day (E) 1.5 and cultured in OSKMmedia. One microgram per milliliter of

rapamycin was added into culture at E2.5 for 4 hr. Distribution of embryonic stage at E3.0 was calculated as mean ± SD (right panel). **p < 0.01. Red arrow

indicates blastocyst. Scale bar, 100 mm.

See also Figure S1.
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Atg3- or Atg7-silenced cells, respectively, rescued autophagy

and restored their capacity to generate iPSCs (Figures S1C

and S1D). Overall, these indicate that autophagy is required

for iPSC generation. We used 4F2A MEFs expressing green

fluorescent protein (GFP) fused LC3 (GFP-LC3), an autophago-

some marker protein, to monitor autophagic activity during re-

programming. Surprisingly, autophagosomes appeared at the

first day after OSKM induction and peaked on the following

day (Figure 1C). The autophagic flux was verified by conversion

of LC3-II and degradation of p62, an autophagic substrate

(Mathew et al., 2009) (Figure 1D), and autophagosomal struc-

tures were observed by electron microscopy (Figure 1E). Induc-

tion of autophagy did not occur in wild-type (WT) MEFs after

treatment with doxycycline alone (Figure S1E). In addition, we

verified that Atg5-deficient cells failed to reduce mitochondrial

numbers and reactive oxygen species (ROS) levels after

OSKM induction (Figures S1F–S1H), changes that are also
618 Cell Stem Cell 13, 617–625, November 7, 2013 ª2013 Elsevier In
viewed as being hallmarks of the establishment of pluripotency

(Sena and Chandel, 2012).

A previous study showed that Atg5-deficient oocytes could

not develop to the four- to eight-cell stage after fertilization

with Atg5 null sperm (Tsukamoto et al., 2008). We also examined

embryos at this stage, and found that the level of GFP-LC3

protein reduced rapidly at the four- to eight-cell stage of WT

embryos, indicating active autophagy, and was restored by the

autophagy inhibitor Bafilomycin A1 (BafA1) (Figure 1F). When

we treated embryos with rapamycin to induce autophagy at

the four-cell stage, blastocysts appeared as early as embryo

day (E) 3.0 (Figure 1G), suggesting that autophagy induction

also promotes embryonic development.

Sox2 Initiates Autophagy during Cell Reprogramming
The overall gene expression profile of cells changes substantially

during reprogramming (Buganim et al., 2012). To explore which
c.
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factors contribute to autophagy induction, we analyzed the

mRNA levels of various autophagy-related genes (Atg) at an early

stage of iPSC formation. However, all of the Atg genes that we

examined showed no significant change after iPSC induction

(Figure S2A). We also evaluated the expression levels of genes

that are important for autophagy modulation. Interestingly, we

observed that mTOR mRNA dramatically declined on the first

day of OSKM expression (Figure S2B). The mTOR protein level

was also repressed for the first two days of the reprogramming

process (Figure S2C) but was then restored to basal levels at

day 3 of iPSC generation. mTOR exists in two distinct com-

plexes, mTORC1 and mTORC2 (Zoncu et al., 2011). mTORC1

phosphorylates S6K at Thr389 and mTORC2 phosphorylates

AKT at Ser473 to facilitate the phosphorylation of AKT at

Thr308 (Sarbassov et al., 2005; Zoncu et al., 2011). We found

that phosphorylation of both AKT and S6K was completely sup-

pressed during early reprogramming (Figure S2C), indicating

that both mTORC1 and mTORC2 are inhibited. Consistent with

this observation we also found that polysomes were reduced

during the initial days of reprogramming (Figure S2D). Autophagy

could be blocked by ectopic expression of WT mTOR but not

kinase-dead mTOR (mTOR-KD, an inactive form of mTOR;

Brunn et al., 1997) during iPSC induction (Figure S2E). Of note,

transient overexpression of WT mTOR blocked iPSC formation,

but mTOR-KD had no such activity (Figure S2F). Moreover, the

efficiency of iPSC generation could be improved by adding the

mTOR inhibitor rapamycin on day 1 of doxycycline induction

(Figure S2G). Addition of LY294002, a reversible inhibitor of

PI3Ks (Walker et al., 2000) that inhibits autophagy by blocking

the activity of Beclin 1-Vps34 complex (Figure S2H), also

impaired iPSC generation. The timing of inhibition was also

important. When we treated 4F2AMEFs with rapamycin to block

mTOR 3 days after doxycycline induction, no iPSCs were

obtained (Figure S2I). These data suggest that an initial short

burst of mTOR suppression at an early stage and then restora-

tion of mTOR activity at a later stage are both required for suc-

cessful reprogramming to take place.

We next analyzed the role of each of the four pluripotency fac-

tors in regulation of mTOR expression. Interestingly, ectopic

expression of Sox2 dramatically suppressed mTOR expression

and promoted the induction of autophagy (Figures 2A–2C), like

OSKM expression. However, the other three factors did not

impact mTOR expression or autophagy induction (Figures 2A

and 2B and Figure S2J). Additionally, we found that Sox2 over-

expression could not suppress mTOR expression in HeLa or

HEK293T cells (Figure S2K), and we therefore propose that

this activity is only manifest during reprogramming. Under phys-

iological conditions, Sox2 is required for the derivation of ESCs,

and Sox2 deficiency leads to early embryonic lethality (Avilion

et al., 2003; Keramari et al., 2010; Masui et al., 2007). We found

that maternal Sox2 protein persisted in the nucleus and cyto-

plasm of zygotes during embryonic development (Figure 2D),

and nuclear Sox2 rose at the four- to eight-cell stage, accompa-

nied with downregulation of mTOR expression (Figures 2D and

2E). Correspondingly, enhanced autophagy occurred at this

stage (Figure 1F). We derived Sox2+/+; GFP-LC3 and Sox2�/�;
GFP-LC3 embryos through mating of Sox2+/�; EIIa-Cre; GFP-

LC3 females with Sox2flox/+ males. In Sox2�/� embryos, we

found that autophagy was impaired (Figure 2F), and the mTOR
Cell
protein level was not reduced at the four- to eight-cell stage

(Figure 2G). These data are consistent with the idea that Sox2

initiates autophagy by suppressing mTOR expression during

the cellular reprogramming that occurs in early embryogenesis.

Sox2 Suppresses mTOR Expression through
Recruitment of NuRD Complex
Sox2 contains a high-mobility-group (HMG) domain, which

binds DNA in a sequence-specific manner (Sarkar and Hoched-

linger, 2013). We analyzed a 5-kilobase (kb) locus upstream

from transcription start sites (TSS) of the mTOR gene. Using

chromatin immunoprecipitation (ChIP), we found that

a �2,200��1,200 base pair (bp) region of the mTOR promoter

upstream from the TSS was occupied by Sox2 protein (Fig-

ure 3A). To verify that mTOR transcriptional activity is inhibited

by Sox2, we used luciferase reporter constructs. Based on these

experiments, we identified a �1,800��1,600 bp fragment of an

mTOR promoter as a repressive region where Sox2 bound (Fig-

ures 3B and 3C). We then mapped the binding locus on the

mTOR promoter by electrophoretic mobility shift assay (EMSA)

with different oligos from the �1,820��1,581 bp fragment,

and we determined that the �1,660��1,621 bp region of the

mTOR promoter contains the Sox2 binding locus (Figures 3D

and 3E). To investigate a physiological function of this repressive

region, we employed transcription activator-like effector

nuclease (TALEN) technology to delete the Sox2 binding locus

on the mTOR promoter (DmTOR) in MEFs (Figures S3A and

S3B). As expected, the binding of Sox2 was abrogated in

DmTOR MEFs (Figure 3F). The expression levels of OSKM in

DmTOR; 4F2A MEFs were similar to those of WT 4F2A MEFs

(Figure S3C). However, deletion of the repressive locus restored

both the mRNA and protein levels of mTOR during early iPSC in-

duction (Figure 3G and Figure S3D) with inhibition of autophagy

as a result (Figures 3G and 3H).We treated theDmTOR cells with

rapamycin during the first 2 days of reprogramming and restored

the expected level of autophagy (data not shown). Importantly,

we did not see production of iPSCs in DmTOR cells, and this

capacity was also restored by rapamycin treatment (Figure 3I).

These data suggest that mTOR suppression at an early stage

is essential for reprogramming to pluripotency to take place.

To support this conclusion further, we generated an inducible

knockdown system for mTOR in DmTOR MEFs to determine

whether silencing of mTOR can rescue reprogramming in these

cells. We treated inducible shmTOR DmTORMEFs with doxycy-

cline to induce the silencing of mTOR during the first 2 days of

reprogramming but also the expression of Oct4, c-Myc, and

Klf4 (without Sox2). After 2 days’ treatment, Sox2 was also

added and mTOR was returned to basal levels by the removal

of doxycycline (Figure S3E). Since we used DmTOR cells,

Sox2 could not downregulate mTOR. As expected, iPSCs ap-

peared from shmTOR DmTOR MEFs (Figure S3F). These data

indicate that silencing of mTOR in the absence of Sox2 at an

early stage of reprogramming is sufficient for iPSC generation.

To examine the role of mTORC1 andmTORC2 in cell reprogram-

ming, we knocked down Raptor and Rictor separately. We found

that silencing of Raptor, but not Rictor, in DmTOR cells at the

early stage of reprogramming could rescue iPSC generation in

DmTOR cells (Figure S3G), suggesting that inhibition ofmTORC1

is essential for cellular reprogramming. In sum, therefore, Sox2
Stem Cell 13, 617–625, November 7, 2013 ª2013 Elsevier Inc. 619



Figure 2. Sox2 Contributes to Autophagy Initiation during iPSC Formation

(A) Sox2 downregulatesmTORmRNAduring iPSC formation.WTMEFswere infectedwith retrovirus encodingOSKM factors together or individually and cultured

in ESC media for 24 hr. mRNA levels of the indicated genes were analyzed by RT-PCR. Data are representative of three different experiments and shown as

mean ± SD. **p < 0.01.

(B) Sox2 contributes to mTOR repression. WT MEFs treated as above were harvested and subjected to immunoblotting with the indicated antibodies.

(C) Sox2 initiates autophagy. GFP-LC3 MEFs were infected with retrovirus encoding Sox2 or empty vector (Ctrl) and cultured in ESC media for 48 hr, and GFP-

LC3 dots were analyzed by confocal microscopy (upper panel) and calculated as mean ± SD (lower panel). ***p < 0.001. Scale bar, 10 mm.

(D) mTOR is downregulated at the four- to eight-cell stage of embryos. Embryos at the indicated stages were isolated and subjected to immunostaining. Nuclei

were visualized by DAPI. Scale bar, 20 mm.

(E) Transcription ofmTOR is impaired at the four- to eight-cell stage. Embryos at the two-cell stage (E1.5) or the four- to eight-cell stage (E2.5) were isolated and

harvested for mRNA extraction for RT-PCR. Data are representative of three independent experiments and are shown as mean ± SD.

(F) Autophagy is defective inSox2�/� embryos. Embryos from Sox2+/�; EIIa-Cre;GFP-LC3 femalesmatedwithSox2flox/+males were isolated for immunostaining.

Scale bar, 20 mm.

(G) Sox2 deficiency potentiates mTOR expression. Embryos from Sox2+/�; EIIa-Cre females mated with Sox2flox/+ males were harvested for immunostaining.

Scale bar, 20 mm. We used two different anti-mTOR antibodies (#2972 and #2983, Cell Signaling Technology) for immunoblotting and two different anti-mTOR

antibodies (#2983 from Cell Signaling Technology and #sc-8319 from Santa Cruz Biotechnology) for immunofluorescent staining and received similar results.

See also Figure S2.
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occupies a specific region on the mTOR promoter to suppress

mTOR transcription, leading to initiation of autophagy during

iPSC generation.

To explore the mechanism of Sox2-mediated inactivation of

mTOR transcription, we generated an affinity resin coupled

with the�1,660��1,621 bpDNA segment and used DNA affinity

chromatography to screen for associated proteins that specif-

ically bind to the 40 nucleotides. Notably, several components

of the NuRD complex were pulled down from nuclear extracts

of MEFs expressing Sox2 (Figure 4A and Figure S4A). The major

identified components of NuRD complex (includingMi-2b, LSD1,
620 Cell Stem Cell 13, 617–625, November 7, 2013 ª2013 Elsevier In
MTA2, andHDAC1) were confirmed by immunoblotting with their

specific antibodies (Figure 4B). Sox2 could also precipitate the

major components of NuRD complex in vivo through an immuno-

precipitation assay (Figure 4C).

Previous studies have shown that the NuRD complex is a tran-

scriptional repressor that is recruited to gene promoters through

interaction with a DNA sequence-specific transcription factor for

chromatin remodeling and histone modification (Hu and Wade,

2012). The NuRD complex contributes to deacetylation and

demethylation of histones (Wang et al., 2009), which is essential

for pluripotency of ESCs (Adamo et al., 2011; Kaji et al., 2006;
c.



Figure 3. Sox2 Targets mTOR Promoter to Repress Its Expression

(A) Sox2 is recruited to the mTOR promoter. ChIP analysis monitored binding of Sox2 to mTOR promoter in MEFs expressing empty vector (Ctrl) or Sox2. Data

represent at least three separate experiments and are shown as mean ± SD. **p < 0.01.

(B andC) Sox2 suppressesmTOR transcription. Different loci of themTOR promoter were constructed into pGL3 vector, transfected intoMEFs expressing empty

vector (Ctrl) or Sox2, and subjected to luciferase reporter assay. Data are representative of three different experiments and are shown as mean ± SD. **p < 0.01.

(D) Sox2 binds to themTOR promoter. Nuclear extracts fromMEFs expressing Sox2 were monitored by EMSA assay with different probes as shown in the upper

panel.

(E) Sox2 binds a specific locus on themTOR promoter. EMSA assay monitored Sox2 binding ofmTOR promoter with the specific 40 nucleotide probe (#2 probe

as in 3D) with nuclear extracts fromMEFs expressing empty vector (Ctrl) or Sox2. Anti-Sox2 antibody was added for supershift assay, and unlabeled probes were

added for competitive reaction.

(F) The repressive locus deletion (DmTOR) abolishes Sox2 binding to mTOR promoter. WT or DmTOR MEFs expressing empty vector (Ctrl) or Sox2 were

subjected to ChIP assay by our use of anti-Sox2 antibody. Data are representative of three independent experiments and are shown as mean ± SD. **p < 0.01.

(G) DmTOR abrogates mTOR downregulation and autophagy. WT or DmTOR; 4F2A MEFs were cultured in doxycycline-contained ESC media for the indicated

days and harvested for immunoblotting.

(H)mTOR expression and autophagy induction are impaired inDmTORMEFs.WT orDmTOR;GFP-LC3; 4F2AMEFswere cultured in doxycycline-contained ESC

media for 48 hr and subjected to immunostaining. Scale bar, 10 mm.

(I) iPSC generation is blocked inDmTORMEFs. 4F2AWT or 4F2A; DmTORMEFs were treated with or without 1 mg/ml rapamycin (Rapa) for 48 hr and cultured in

ESC media containing doxycycline for 3 weeks. The iPSCs were visualized by AP staining. Data are representative of three different experiments and are shown

as mean ± SD. ***p < 0.001. Similar results were obtained by using two different anti-mTOR antibodies for immunoblotting and immunofluorescence assays as

described above.

See also Figure S3.
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Figure 4. Sox2 Recruits the NuRD Complex to Inhibit mTOR Transcription

(A) Identification of NuRD complex by a DNA pulldown assay. The binding region (40 nt) on themTOR promoter of Sox2was conjugated to CNBr activated beads.

Nuclear extracts from MEFs expressing GFP or Sox2 were incubated with DNA-conjugated beads for 20 min and the precipitates were subjected to SDS-PAGE

for silver staining and mass spectrometry. M, molecular weight (MW) marker.

(B) The identified components of the NuRD complex were confirmed by western blotting.

(C) Sox2 can precipitate the NuRD complex in vivo. MEFs expressing GFP or Sox2 were harvested for immunoprecipitation with anti-Sox2 antibody. Immu-

noprecipitates were detected by immunoblotting with the indicated antibodies.

(D) Silencing of NuRD complex components restores mTOR mRNA levels. MEFs were infected with retrovirus encoding shRNA against scramble sequence

(shCtrl) or components of NuRD complex, as well as Sox2 or empty vector, and cultured in ESC media for 24 hr followed by RT-PCR analysis. Data are

representative of at least three experiments and are shown as mean ± SD. **p < 0.01.

(E) The NuRD complex is required for autophagy flux induced by Sox2. MEFs were infected with retrovirus encoding the indicated shRNA and Sox2 or empty

vector, cultured in ESC media for 24 hr, and harvested for immunoblotting. b-actin was used as a loading control.

(F) The NuRD complex is recruited tomTOR promoter during early embryonic development. Embryos from the two-cell stage or the four- to eight-cell stage were

determined by ChIP analysis. Data represent three separate experiments and are shown as mean ± SD. **p < 0.01.

(G and H) Knockdown of NuRD complex components impairs mTOR downregulation at the four- to eight-cell stage of embryos. Mi-2b (G) or LSD1 (H) was

silenced with siRNA duplexes at E1.5. Embryos were cultured in OSKMmedia for 24 hr and subjected to immunostaining. Scale bar, 20 mm. Similar results were

obtained by using two different anti-mTOR antibodies for immunoblotting and immunofluorescence assays as described above.

See also Figure S4.
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Zhu et al., 2009). However, its functions in somatic cell program-

ming are unclear. Using ChIP assays, we found that Sox2 could

recruit the NuRD complex to the mTOR promoter (Figure S4B).

Consistently, the NuRD complex suppressed the addition of

H3K9K14ac and H3K4me1 transcriptional activation marks on

the mTOR promoter (Figure S4B). We knocked down compo-

nents of the NuRD complex individually and found that depletion

of eachNuRDcomponent resulted in restoration ofmTORmRNA

(Figure 4D). Intriguingly, knockdown of NuRD complex compo-

nents also restored the mTOR protein level and abrogated

Sox2-mediated autophagy induction (Figure 4E and Figure S4C).

We then looked at the binding of the NuRD complex to themTOR

promoter at 3 days after the initiation of iPSC induction, and we

found that theNuRDcomplex disassociated from themTOR pro-

moter at this time (Figure S4D) and that H3K4me1 and

H3K9K14ac returned to basal levels at that later stage. These

data suggest that dynamic binding of NuRD complex to the

mTOR promoter correlates with the restoration of mTOR during

the reprogramming process. Furthermore, disruption of the

NuRD complex impaired iPSC formation (Figure S4E). We also

silenced mTOR during the initial reprogramming period in

NuRD-complex-silenced cells and found that reprogramming

was again rescued (Figure S4F). Together, these results suggest

that NuRD-complex-mediated suppression of mTOR transcrip-

tion contributes to somatic cell reprogramming.

We then looked at binding of the NuRD complex to the mTOR

promoter during embryonic development. We found that the

NuRD complex was recruited to the mTOR promoter at the

four- to eight-cell stage (Figure 4F), and H3K9K14ac and

H3K4me1 were substantially reduced at the mTOR promoter.

Notably, silencing of NuRD complex components in embryos

at the four- to eight-cell stage maintained the mTOR protein

level (Figures 4G and 4H and Figure S4G). These data indicate

that NuRD-complex-mediated suppression of mTOR is also

involved in early embryonic development and is likely to be

the relevant mechanism for autophagy induction in this context

as well.

DISCUSSION

In this study, we outline a pathway in which Sox2-mediated

suppression of mTOR expression leads to a transient increase

in autophagy early in the reprogramming process that is required

for successful reprogramming to take place. mTOR is a key

modulator of aging, protein synthesis, glycolysis, and autophagy

(Johnson et al., 2013). Previous studies on the role of mTOR in

reprogramming have led to some apparently contradictory find-

ings. For example, He et al. found that Tsc2 deficiency and high

concentrations of rapamycin both blocked generation of iPSCs

(He et al., 2012). Our study provides a molecular explanation

for this observation by showing that an initial short burst of

mTOR suppression at an early stage and mTOR activity restora-

tion at a later stage are both required for reprogramming to

be completed successfully. Our findings also reveal that the

dynamic repression and restoration of mTOR activity are pre-

cisely regulated by the Sox2-NuRD complex during the reprog-

ramming process. Further studies are needed to elucidate the

underlying mechanism that mediates termination of mTOR

suppression and autophagy.
Cell
Some of our results regarding mTOR expression during early

embryogenesis differ from those reported previously. González

et al. (2012) showed that mTOR protein levels were consistent

from oocyte to blastocyst. However, these two studies used

different mouse strains. We used C57BL/6 mice, while González

et al. used ICRmice. It is possible that strain-specific differences

in mTOR epitope detection or early embryogenesis pathways

could contribute to the difference in results, particularly because

the efficiency of ESC derivation is known to differ between

mouse strains (Hanna et al., 2010).

Sox2 is a core factor for cell reprogramming. We found that

Sox2 occupies a �1,660��1,621 bp segment upstream of the

TSS of the mTOR gene during the early stages of reprogram-

ming. Our data indicate that Sox2 recruits the NuRD complex

that downregulates H3K9K14ac and H3K4me1, leading to

transcriptional inhibition of mTOR. Silencing of NuRD complex

components impaired the repression of mTOR expression

and induction of autophagy. After initiation of cellular reprog-

ramming, the NuRD complex disassociates from the mTOR

promoter to restore mTOR expression for the rest of the reprog-

ramming process. Our findings therefore reveal that the NuRD

complex participates in the regulation of somatic cell reprogram-

ming. In addition, the NuRD complex is essential for embryonic

development and deficiency of the NuRD complex causes early

embryonic lethality (Hu and Wade, 2012). During embryonic

development, we found that the NuRD complex downregulated

H3K9K14ac and H3K4me1 of themTOR promoter, and silencing

of NuRD components restored the mTOR protein level, suggest-

ing that the NuRD complex epigenetically regulates the mTOR

promoter in a manner that is essential for embryonic cellular

reprogramming. Further understanding of the mechanisms of

somatic reprogramming will help us not only to promote effi-

ciency of iPSC generation but also to shed light on the develop-

mental biology of early embryogenesis.

EXPERIMENTAL PROCEDURES

Generation of iPSCs

MEFs were obtained at E14.5 of 4F2A embryos, GFP-LC3; 4F2A embryos, or

Atg5�/�; 4F2A embryos and supplied with Dulbecco’s modified Eagle’s

medium (DMEM) (Invitrogen) with 15% FBS, 100 mg/ml streptomycin, and

100 U/ml penicillin. After one passage, MEFs were plated on a 6-well dish

and cultured in ESC media containing 2 mg/ml doxycycline. After 7 days,

MEFs were plated on mitomycinC-treated B6 MEF feeders. After 3 weeks

in ESC media containing doxycycline, iPSC colonies were analyzed by an

alkaline phosphatase detection kit (Millipore).

Generation of Atg5+/+ and Atg5–/– MEFs

Atg5flox/flox mice were crossed with EIIa-Cre mice to obtain Atg5+/� mice.

Atg5+/�mice were crossed with 4F2A transgenic mice orGFP-LC3 transgenic

mice to obtain 4F2A;Atg5+/� andGFP-LC3;Atg5+/�mice. Next, 4F2A;Atg5+/�

mice were crossed with GFP-LC3; Atg5+/� mice. The pregnant mice were

sacrificed and E14.5 embryos were isolated and digested into single MEFs.

The genotypes of MEFs (4F2A; GFP-LC3; Atg5+/+ MEFs and 4F2A; GFP-

LC3; Atg5�/� MEFs) were analyzed by PCR.

Immunofluorescence Assay

Immunofluorescence assays were performed as previously described (Wang

et al., 2012b; Xia et al., 2013). Briefly, MEFs were grown on 0.01% poly-L-

Lysine-treated coverslips and infected with retrovirus encoding the indicated

proteins for 24 hr. Next, cells were fixed with 4% paraformaldehyde (PFA)

(Sigma-Aldrich) for 20 min at room temperature (RT) followed by permeabiliza-

tion with 0.5% Triton X-100 for 20 min at RT. Ten percent donkey serum was
Stem Cell 13, 617–625, November 7, 2013 ª2013 Elsevier Inc. 623
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used for blocking followed by incubation of primary antibodies for 2 hr at RT.

After being washed three times with PBS, the coverslips were stained with

Alexa 488-, Alexa 594-, or Alexa 405-conjugated secondary antibodies. For

embryonic assay, embryos were collected from pregnant mice at the indicated

times, treated with acidic tyrode for 30 s to remove zona pellucid, fixed with

4% PFA for 20 min at RT, and permeabilized with 0.5% Triton X-100 in PBS

for 20 min at RT. After being blocked with 10% donkey serum, embryos

were incubated with primary antibodies at 4�C overnight and then with sec-

ondary antibodies for 1 hr at RT. Images were visualized by laser scanning

confocal microscopy (Olympus FV500).

Statistical Analysis

Student’s t test was used as statistical analysis through our use of Sigma Plot.

For other methods see the Supplemental Information.
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