1,858 research outputs found

    Stabilization of molten salt materials using metal chlorides for solar thermal storage

    Get PDF
    The effect of a variety of metal-chlorides additions on the melting behavior and thermal stability of commercially available salts was investigated. Ternary salts comprised of KNO3, NaNO2, and NaNO3 were produced with additions of a variety of chlorides (KCl, LiCl, CaCl2, ZnCl2, NaCl and MgCl2). Thermogravimetric analysis and weight loss experiments showed that the quaternary salt containing a 5 wt% addition of LiCl and KCl led to an increase in short term thermal stability compared to the ternary control salts. These additions allowed the salts to remain stable up to a temperature of 630 °C. Long term weight loss experiments showed an upper stability increase of 50 °C. A 5 wt% LiCl addition resulted in a weight loss of only 25% after 30 hours in comparison to a 61% loss for control ternary salts. Calorimetry showed that LiCl additions allow partial melting at 80 °C, in comparison to the 142 °C of ternary salts. This drop in melting point, combined with increased stability, provided a molten working range increase of almost 100 °C in total, in comparison to the control ternary salts. XRD analysis showed the oxidation effect of decomposing salts and the additional phase created with LiCl additions to allow melting point changes to occur

    Scattering of Giant Holes

    Full text link
    We study scalar excitations of high spin operators in N=4 super Yang-Mills theory, which are dual to solitons propagating on a long folded string in AdS_3 x S^1. In the spin chain description of the gauge theory, these are associated to holes in the magnon distribution in the sl(2,R) sector. We compute the all-loop hole S-matrix from the asymptotic Bethe ansatz, and expand in leading orders at weak and strong coupling. The worldsheet S-matrix of solitonic excitations on the GKP string is calculated using semiclassical quantization. We find an exact agreement between the gauge theory and string theory results.Comment: 13 pages. v2: minor corrections, references adde

    An Experimental Study on Kinetics-Controlled Ca-Carbonate Aqueous Reduction into CH4 (1 and 2 GPa, 550 degrees C): Implications for C Mobility in Subduction Zones

    Get PDF
    Abiotic methane (CH4) generation under subduction zone conditions has been experimentally investigated through aqueous reduction of pure C-bearing materials (e.g. carbonate minerals and organic matter). However, quantitative assessments of CH(4 )production in these experiments, as well as the potential effects of other components such as SiO2 on the reduction processes, have not yet been well established. Here, we performed experiments to quantitatively evaluate the time-resolved Ca-carbonate aqueous reduction into CH4 at P = 1 and 2 GPa and T = 550 degrees C in the CaO + COH, CaO + SiO2 COH, and CaO + SiO2 + MgO + COH systems, employing calcite + water +/- quartz +/- serpentine (synthetic chlorine (Cl)-bearing chrysotile and natural Fe-Al-bearing antigorite) as starting materials. Redox conditions of the experiments were buffered by iron-wilstite (IW) using a double capsule setting, corresponding to oxygen fugacity (fO(2)) values (expressed as log units relative to the fayalite-magnetite-quartz buffer, Delta FMQ) in the inner capsule of Delta FMQ approximate to -5.5 at 1 GPa and Delta FMQ approximate to -6.0 at 2 GPa. The solid products are mainly composed of portlandite +/- larnite +/- wollastonite +/- brucite, while Ca-carbonate and/or silicate reactants commonly occur as relicts. Quadrupole mass spectrometric analysis shows that CH4 and H2O are the major COH molecular species in the fluid products, with molar ratios between CH4 and starting calcite representing the reaction progress ranging from similar to 0.13 to similar to 1.00. Comparisons of experimental run products with thermodynamically predicted phase assemblages, together with time-series experiments, indicate that the reduction processes are primarily controlled by reaction kinetics. At 1 GPa and 550 degrees C, rate constants of 4.0 x 10(-6) s(-1), 7.4 x 10(-6) s(-1) , and 2.6 x 10(-6 )s(-1) were retrieved for reactions starting with calcite + quartz + water, calcite + synthetic Cl-bearing chrysotile + water, and calcite + natural Fe-Al-bearing antigorite + water, respectively, significantly higher than the constant of 0.8 x 10(-6) s(-1 )for the silicate-absent reaction. Besides, an increase in pressures can also enhance the reduction efficiency of Ca-carbonates until reaching equilibrium with the fluids. Our data provide experimental evidence for kinetics-controlled Ca-carbonate aqueous reduction into CH4 in subduction zones, indicating that silicate involvement and/or pressure increase can accelerate the reaction rates through short-lived fluid-rock interactions, which may have important implications for deep C mobility

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Quasi-radial growth of metal tube on si nanowires template

    Get PDF
    It is reported in this article that Si nanowires can be employed as a positive template for the controllable electrochemical deposition of noble metal tube. The deposited tube exhibits good crystallinity. Scanning electron microscope and transmission electron microscope characterizations are conducted to reveal the growth process of metal tube, showing that the metal tube grows quasi-radially on the wall of Si nanowire. The quasi-radial growth of metal enables the fabrication of thickness-defined metal tube via changing deposition time. Inner-diameter-defined metal tube is achieved by choosing Si nanowires with desired diameter as a template. Metal tubes with inner diameters ranging from 1 μm to sub-50 nm are fabricated

    General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts

    Get PDF
    Although Raney nickel made by dealloying has been used as a heterogeneous catalyst in a variety of organic syntheses for more than 80 years, only recently scientists have begun to realize that dealloying can generate nanoporous alloys with extraordinary structural characteristics. Herein, we achieved successful synthesis of a variety of monodisperse alloy nanoporous nanoparticles via a facile chemical dealloying process using nanocrystalline alloys as precursors. The as-prepared alloy nanoporous nanoparticles with large surface area and small pores show superior catalytic properties compared with alloyed nanoparticles. It is believed that these novel alloy nanoporous nanoparticles would open up new opportunities for catalytic applications

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model
    • …
    corecore