773 research outputs found

    Application of k-means method to pattern recognition in on-line cable partial discharge monitoring

    Get PDF
    On-line Partial Discharge (PD) monitoring is being increasingly adopted in an effort to improve asset management of the vast network of MV and HV power cables. This paper presents a novel method for autonomous recognition of PD patterns recorded under conditions in which a phase-reference voltage waveform from the HV conductors is not available, as is often the case in on-line PD based insulation condition monitoring. The paper begins with an analysis of two significant challenges for automatic PD pattern recognition. A methodology is then proposed for applying the K-Means method to the task of recognizing PD patterns without phase reference information. Results are presented to show that the proposed methodology is capable of recognising patterns of PD activity in on-line monitoring applications for both single-phase and three-phase cables and is also effective technique for rejecting interference signals

    In silico Assessment of Drug-like Properties of Alkaloids from Areca catechu L Nut

    Get PDF
    Purpose: To investigate in silico the drug-like properties of alkaloids (arecoline, arecaidine, guvacine, guvacoline, isoguvacine, arecolidine and homoarecoline) obtained from the fruits of Areca catechu L (areca nut).Methods: All chemical structures were re-drawn using Chemdraw Ultra 11.0. Furthermore, software including Bio-Loom for Windows - version 1.5, Molinspiration Property Calculator and ACD/I-LAB service were used to predict the drug-like properties of the alkaloids, including relative molecular mass (MW), partition coefficient log P (cLog P), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), number of rotatable bonds (NROTB), pKa, and aqueous solubility at a given pH (LogS). In addition, Lipinski’s rule was used to evaluate druglike properties.Results: From our research, MWs of the seven compounds were all < 500. HBD and cLog P values of the seven compounds were all < 5, and HBA values were all < 10. In addition, TPSA value of each compound was < 60 Å2, and NROTB value was < 10. Besides, pKa values of the seven alkaloids were > 7.5; furthermore, they possess good solubility at pH 1.0, 5.0, and 7.0.Conclusion: All the seven alkaloids possess good drug-like properties, and demonstrated good oral absorption and bioavailability. The results also suggest that these compounds can be further developed into new oral drugs for treating certain diseases.Keywords: Areca catechu L, Areca nut, Drug-like properties, Alkaloids, Arecoline, Arecaidine, Guvacine, Guvacoline, Isoguvacine, Arecolidine, Homoarecoline, In silic

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Get PDF
    This paper reports two new indium tin oxide (ITO)-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length,) were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness) was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter). The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested

    Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

    Get PDF
    Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way
    corecore