25 research outputs found

    Downregulation of MicroRNA-9 in iPSC-Derived Neurons of FTD/ALS Patients with TDP-43 Mutations

    Get PDF
    Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43, and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization, two to three iPSC lines from each subject were selected, differentiated into postmitotic neurons, and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First, TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second, the total TDP-43 level was lower in patient neurons with the A90V mutation. Third, the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43, as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation, suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts

    Facile Morphology and Porosity Regulation of Zeolite ZSM-5 Mesocrystals with Synergistically Enhanced Catalytic Activity and Shape Selectivity

    No full text
    The morphology and mesoporosity of zeolite are two vital properties to determine its performance in diverse applications involving adsorption and catalysis; while it remains a big challenge for the synthesis and regulation of zeolites with exceptional morphology/porosity only through inorganic-ions-based modification. Herein, by simply optimizing the alkali metal type (K+ or Na+), as well as alkali/water ratio and crystallization temperature, the zeolite ZSM-5 mesocrystals with diverse mesostructures are simply and controllably prepared via fine-tuning the crystallization mechanism in an organotemplate-free, ions-mediated seed-assisted system. Moreover, the impacts of these key parameters on the evolution of seed crystals, the development and assembly behavior of aluminosilicate species and the solution-phase process during zeolite crystallization are investigated by means of directional etching in NH4F or NaOH solutions. Except for the morphology/mesoporosity modulation, their physical and chemical properties, such as particle size, microporosity, Si/Al ratio and acidity, can be well maintained at a similar level. As such, the p/o-xylene adsorption and catalytic performance of o-xylene isomerization are used to exhaustively evaluate the synergistically enhanced catalytic activity and shape selectivity of the obtained products. This work demonstrates the possibility of effectively constructing novel zeolite mesostructures by simply altering parameters on simple ions-controlled crystallization and provides good models to inspect the impacts of mesoporosity or morphology on their catalytic performances

    NEAT1 is Required for Survival of Breast Cancer Cells Through FUS and miR-548

    No full text
    Increasing evidence shows that long noncoding RNAs (lncRNAs) have important roles in the regulation of multiple cellular processes, including cell division, cell growth, and apoptosis, as well as cancer metastasis and neurological disease progression; however, the mechanism of how lncRNAs regulate these processes is not well established. In this study, we demonstrated that downregulating the expression of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in breast cancer cells inhibited cell growth and induced cell apoptosis. In addition, the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS/TLS) physically interacted with NEAT1, and reducing the expression of FUS/TLS also induced cell apoptosis. Multiple miRNAs were identified as regulators of NEAT1, but only overexpression of miR-548ar was able to decrease NEAT1 expression and promote apoptosis. These results indicate a novel interaction between NEAT1, miR-548ar-3p, and FUS and their role in the regulation of breast cancer cell apoptosis

    NEAT1 is Required for Survival of Breast Cancer Cells through FUS and miR-548

    Get PDF
    Increasing evidence shows that long noncoding RNAs (lncRNAs) have important roles in the regulation of multiple cellular processes, including cell division, cell growth, and apoptosis, as well as cancer metastasis and neurological disease progression; however, the mechanism of how lncRNAs regulate these processes is not well established. In this study, we demonstrated that downregulating the expression of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in breast cancer cells inhibited cell growth and induced cell apoptosis. In addition, the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS/TLS) physically interacted with NEAT1, and reducing the expression of FUS/TLS also induced cell apoptosis. Multiple miRNAs were identified as regulators of NEAT1, but only overexpression of miR-548ar was able to decrease NEAT1 expression and promote apoptosis. These results indicate a novel interaction between NEAT1, miR-548ar-3p, and FUS and their role in the regulation of breast cancer cell apoptosis
    corecore