157 research outputs found

    Interaction induced decay of a heteronuclear two-atom system

    Get PDF
    Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87^{87}Rb and 85^{85}Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. The developed experimental method allows us to single out a particular relaxation process and, in this sense, our experiment is a "superclean platform" for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.Comment: 8 pages, 3 figure

    Neural Conversation Generation with Auxiliary Emotional Supervised Models

    Get PDF
    An important aspect of developing dialogue agents involves endowing a conversation system with emotion perception and interaction. Most existing emotion dialogue models lack the adaptability and extensibility of different scenes because of their limitation to require a specified emotion category or their reliance on a fixed emotional dictionary. To overcome these limitations, we propose a neural conversation generation with auxiliary emotional supervised model (nCG-ESM) comprising a sequence-to-sequence (Seq2Seq) generation model and an emotional classifier used as an auxiliary model. The emotional classifier was trained to predict the emotion distributions of the dialogues, which were then used as emotion supervised signals to guide the generation model to generate diverse emotional responses. The proposed nCG-ESM is flexible enough to generate responses with emotional diversity, including specified or unspecified emotions, which can be adapted and extended to different scenarios. We conducted extensive experiments on the popular dataset of Weibo post--response pairs. Experimental results showed that the proposed model was capable of producing more diverse, appropriate, and emotionally rich responses, yielding substantial gains in diversity scores and human evaluations.Peer reviewe

    Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes

    Full text link
    Palladium‐based nanocatalysts have the potential to replace platinum‐based catalysts for fuel‐cell reactions in alkaline electrolytes, especially PdCu intermetallic nanoparticles with high electrochemical activity and stability. However, unlike the synthetic methods for obtaining the nanoparticles, the effect of PdCu shape on the performance is relatively less well studied. Here, we demonstrate the facet dependence of PdCu intermetallics on the oxygen reduction reaction (ORR) and peroxide reduction, and reveal that the {100} dominant PdCu cubes have a much higher ORR mass activity and specific activity than spheres at 0.9 V vs. RHE, which is four and five times that of commercial Pd/C and Pt/C catalysts, respectively, and show only a 31.7 % decay after 30 000 cycles in the stability test. Moreover, cubic PdCu nanoparticles show higher peroxide electroreduction activity than Pd cubes and PdCu spheres. Density functional theory (DFT) calculation reveals that the huge difference originates from the reduction in oxygen adsorption energy and energy barrier of peroxide decomposition on the ordered {100} PdCu surface. Given the relationship between the shape and electrochemical performance, this study will contribute to further research on electrocatalytic improvements of catalysts in alkaline environments.Shape the future: PdCu intermetallic cubes and spheres are synthesized to investigate the facet dependence on the oxygen reduction reaction and peroxide reduction. The cubes show large improvements in mass activity towards both reactions, compared with the spheres. DFT calculation uncovers that the dominant {100} faces of the cubes offer more appropriate oxygen adsorption and are thermodynamically favorable for peroxide reduction compared to the surface of spheres.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/1/celc202000381.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/2/celc202000381_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/3/celc202000381-sup-0001-misc_information.pd

    OWL: A Large Language Model for IT Operations

    Full text link
    With the rapid development of IT operations, it has become increasingly crucial to efficiently manage and analyze large volumes of data for practical applications. The techniques of Natural Language Processing (NLP) have shown remarkable capabilities for various tasks, including named entity recognition, machine translation and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various NLP downstream tasks. However, there is a lack of specialized LLMs for IT operations. In this paper, we introduce the OWL, a large language model trained on our collected OWL-Instruct dataset with a wide range of IT-related information, where the mixture-of-adapter strategy is proposed to improve the parameter-efficient tuning across different domains or tasks. Furthermore, we evaluate the performance of our OWL on the OWL-Bench established by us and open IT-related benchmarks. OWL demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.Comment: 31 page

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
    corecore