232 research outputs found

    Time-reversal in dynamically-tuned zero-gap periodic systems

    Full text link
    We show that short pulses propagating in zero-gap periodic systems can be reversed with 100% efficiency by using weak non-adiabatic tuning of the wave velocity at time-scales that can be much slower than the period. Unlike previous schemes, we demonstrate reversal of {\em broadband} (few cycle) pulses with simple structures. Our scheme may thus open the way to time-reversal in a variety of systems for which it was not accessible before.Comment: Accepted for publication in Phys. Rev. Letter

    Full-wave simulations of electromagnetic cloaking structures

    Get PDF
    Based on a coordinate transformation approach, Pendry {\it et al.} have reported electromagnetically anisotropic and inhomogeneous shells that, in theory, completely shield an interior structure of arbitrary size from electromagnetic fields without perturbing the external fields. We report full-wave simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters in an effort to understand the challenges of realizing such a structure in practice. The simulations indicate that the performance of the electromagnetic cloaking structure is not especially sensitive to modest permittivity and permeability variations. This is in contrast to other applications of engineered electromagnetic materials, such as subwavelength focusing using negative refractive index materials. The cloaking performance degrades smoothly with increasing loss, and effective low-reflection shielding can be achieved with a cylindrical shell composed of an eight (homogeneous) layer approximation of the ideal continuous medium

    Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays

    Get PDF
    A sheet consisting of an array of small, aligned Dove prisms can locally (on the scale of the width of the prisms) invert one component of the ray direction. A sandwich of two such Dove-prism sheets that inverts both transverse components of the ray direction is a ray-optical approximation to the interface between two media with refractive indices +n and –n. We demonstrate the simulated imaging properties of such a Dove-prism-sheet sandwich, including a demonstration of pseudoscopic imaging

    Customised broadband metamaterial absorbers for arbitrary polarisation

    Full text link
    This paper shows that customised broadband absorption of electromagnetic waves having arbitrary polarisation is possible by use of lossy cut-wire (CW) metamaterials. These useful features are confirmed by numerical simulations in which different lengths of CW pairs are combined as one periodic metamaterial unit and placed near to a perfect electric conductor (PEC). So far metamaterial absorbers have exhibited some interesting features, which are not available from conventional absorbers, e.g. straightforward adjustment of electromagnetic properties and size reduction. The paper shows how with proper design a broad range of absorber characteristics may be obtained.Comment: 12 pages, 5 figures, submitted to Optics Expres

    Time varying gratings model Hawking radiation

    Full text link
    Diffraction gratings synthetically moving at trans-luminal velocities contain points where wave and grating velocities are equal. We show these points can be understood as a series of optical event horizons where wave energy can be trapped and amplified, leading to radiation from the quantum vacuum state. We calculate the spectrum of this emitted radiation, finding a quasi-thermal spectrum with features that depend on the grating profile, and an effective temperature that scales exponentially with the length of the grating, emitting a measurable flux even for very small grating contrast.Comment: 13 pages, 4 figure

    Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations

    Full text link
    The technique of applying form-invariant, spatial coordinate transformations of Maxwell's equations can facilitate the design of structures with unique electromagnetic or optical functionality. Here, we illustrate the transformation-optical approach in the designs of a square electromagnetic cloak and an omni-directional electromagnetic field concentrator. The transformation equations are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations. The two devices presented demonstrate that the transformation optic approach leads to the specification of complex, anisotropic and inhomogeneous materials with well directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS VII", Elsevie

    Light Collimation and Focussing by a Thin Flat Metallic Slab

    Get PDF
    We present experimental and theoretical work showing that a flat metallic slab can collimate and focus light impinging on the slab from a punctual source. The effect is optimised when the radiation is around the bulk, not at the surface, plasma frequency. And the smaller the imaginary part of the permittivity is, the better the collimation. Experiments for Ag in the visible as well as calculations are presented. We also discuss the interesting case of the Aluminium whose imaginary part of the permittivity is very small at the plasma frequency in UV radiation. Generalization to other materials and radiations are also discussed.Comment: 6 pages, 3 figures. To be published on Optics Lette

    Optical design of reflectionless complex media by finite embedded coordinate transformations

    Full text link
    Transformation optics offers an unconventional approach to the control of electromagnetic fields. A transformation optical structure is designed by first applying a form-invariant coordinate transform to Maxwell's equations, in which part of free space is distorted in some desired manner. The coordinate transformation is then applied to the permittivity and permeability tensors to yield the specification for a complex medium with desired functionality. The transformation optical structures proposed to date, such as electromagnetic "invisibility" cloaks and concentrators, are inherently reflectionless and leave the transmitted wave undisturbed. Here we expand the class of transformation optical structures by introducing finite, embedded coordinate transformations, which allow the electromagnetic waves to be steered or focused. We apply the method to the design of several devices, including a parallel beam shifter and a beam splitter, both of which exhibit unusual electromagnetic behavior as confirmed by 2D full-wave simulations. The devices are designed to be reflectionless, in accordance with a straightforward topological criterion.Comment: submitted to the journal on Sep 10 2007, abstract changed to make it more accessible, keywords adde
    • …
    corecore