574 research outputs found

    Gamma photometric redshifts for long gamma-ray bursts

    Get PDF
    It is known that the soft tail of the gamma-ray bursts' spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effect allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is Δz0.33\Delta z \approx 0.33. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as "gamma photometric redshift estimation". The estimated redshifts for the long bright gamma-ray bursts are up to z4z \simeq 4. For the the faint long bursts - which should be up to z20z \simeq 20 - the redshifts cannot be determined unambiguously with this method.Comment: accepted in A&A, 7 pages incl. 7 figure

    Evolution of the Low-Energy Photon Spectra in Gamma-Ray Bursts

    Full text link
    We report evidence that the asymptotic low-energy power law slope alpha (below the spectral break) of BATSE gamma-ray burst photon spectra evolves with time rather than remaining constant. We find a high degree of positive correlation exists between the time-resolved spectral break energy E_pk and alpha. In samples of 18 "hard-to-soft" and 12 "tracking" pulses, evolution of alpha was found to correlate with that of the spectral break energy E_pk at the 99.7% and 98% confidence levels respectively. We also find that in the flux rise phase of "hard-to-soft" pulses, the mean value of alpha is often positive and in some bursts the maximum value of alpha is consistent with a value > +1. BATSE burst 3B 910927, for example, has a alpha_max equal to 1.6 +/- 0.3. These findings challenge GRB spectral models in which alpha must be negative of remain constant.Comment: 12 pages (including 6 figures), accepted to Ap

    Current Renormalisation Constants with an O(a)-improved Fermion Action

    Get PDF
    Using chiral Ward identities, we determine the renormalisation constants of bilinear quark operators for the Sheikholeslami-Wohlert action lattice at beta=6.2. The results are obtained with a high degree of accuracy. For the vector current renormalisation constant we obtain Z_V=0.817(2)(8), where the first error is statistical and the second is due to mass dependence of Z_V. This is close to the perturbative value of 0.83. For the axial current renormalisation constant we obtain Z_A = 1.045(+10 -14), significantly higher than the value obtained in perturbation theory. This is shown to reduce the difference between lattice estimates and the experimental values for the pseudoscalar meson decay constants, but a significant discrepancy remains. The ratio of pseudoscalar to scalar renormalisation constants, Z_P/Z_S, is less well determined, but seems to be slightly lower than the perturbative value.Comment: 8 pages uuencoded compressed postscript file. Article to be submitted to Phys.Rev.

    Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We study in detail the renomalization group evolution of Yukawa couplings and soft supersymmetry breaking trilinear couplings in the minimal supersymmetric standard model with baryon and lepton number violation. We obtain the exact solutions of these equations in a closed form, and then depict the infrared fixed point structure of the third generation Yukawa couplings and the highest generation baryon and lepton number violating couplings. Approximate analytical solutions for these Yukawa couplings and baryon and lepton number violating couplings, and the soft supersymmetry breaking couplings are obtained in terms of their initial values at the unification scale. We then numerically study the infrared fixed surfaces of the model, and illustrate the approach to the fixed points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version to appear in Physical Review D, minor typographical errors eliminated and references reordered, figures correcte

    Supersymmetric Unification at the Millenium

    Get PDF
    We argue that the discovery of neutrino mass effects at Super-Kamiokande implies a clear logical chain leading from the Standard Model, through the MSSM and the recently developed Minimal Left Right Supersymmetric models with a renormalizable see-saw mechanism for neutrino mass, to Left Right symmetric SUSY GUTS : in particular, SO(10) and SU(2)L×SU(2)R×SU(4)cSU(2)_L \times SU(2)_R\times SU(4)_c. The progress in constructing such GUTS explicitly is reviewed and their testability/falsifiability by lepton flavour violation and proton decay measurements emphasized. Susy violations of the survival principle and the interplay between third generation Yukawa coupling unification and the structurally stable IR attractive features of the RG flow in SUSY GUTS are also discussed .Comment: Plenary Talk at WHEPP-6, Chennai, India, Jan. 3-15, 2000. ReVTeX. 9 pages. Two pairs of figures as separate postscript fil

    Precision Gauge Unification from Extra Yukawa Couplings

    Full text link
    We investigate the impact of extra vector-like GUT multiplets on the predicted value of the strong coupling. We find in particular that Yukawa couplings between such extra multiplets and the MSSM Higgs doublets can resolve the familiar two-loop discrepancy between the SUSY GUT prediction and the measured value of alpha_3. Our analysis highlights the advantages of the holomorphic scheme, where the perturbative running of gauge couplings is saturated at one loop and further corrections are conveniently described in terms of wavefunction renormalization factors. If the gauge couplings as well as the extra Yukawas are of O(1) at the unification scale, the relevant two-loop correction can be obtained analytically. However, the effect persists also in the weakly-coupled domain, where possible non-perturbative corrections at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde

    Chiral symmetry breaking in gauged NJL{\bf NJL} model in curved spacetime

    Get PDF
    Using the renormalization group (RG) approach and the equivalency between the class of gauge-Higgs-Yukawa models and the gauged Nambu-Jona-Lasinio (NJL) model, we study the gauged NJL model in curved space-time. The behaviour of the scalar-gravitational coupling constant ξ(t)\xi(t) in both theories is discussed. The RG improved effective potential of gauged NJL model in curved spacetime is found. The curvature at which chiral symmetry in the gauged NJL model is broken is obtained explicitly in a remarkably simple form. The powerful RG improved effective potential formalizm leads to the same results as ladder Schwinger-Dyson equations which have not been formulated yet in curved spacetime what opens new possibilities in the study of GUTs and NJL-like models in curved spacetime

    Self-Breaking of the Standard Model Gauge Symmetry

    Get PDF
    If the gauge fields of the Standard Model propagate in TeV-size extra dimensions, they rapidly become strongly coupled and can form scalar bound states of quarks and leptons. If the quarks and leptons of the third generation propagate in 6 or 8 dimensions, we argue that the most tightly bound scalar is a composite of top quarks, having the quantum numbers of the Higgs doublet and a large coupling to the top quark. In the case where the gauge bosons propagate in a bulk of a certain volume, this composite Higgs doublet can successfully trigger electroweak symmetry breaking. The mass of the top quark is correctly predicted to within 20%, without the need to add a fundamental Yukawa interaction, and the Higgs boson mass is predicted to lie in the range 165 - 230 GeV. In addition to the Higgs boson, there may be a few other scalar composites sufficiently light to be observed at upcoming collider experiments.Comment: 26 pages, 4 figures, typos corrected, references adde

    Mass predictions based on a supersymmetric SU(5) fixed point

    Get PDF
    I examine the possibility that the third generation fermion masses are determined by an exact fixed point of the minimal supersymmetric SU(5) model. When one-loop supersymmetric thresholds are included, this unified fixed point successfully predicts the top quark mass, 175 +(-) 2 GeV, as well as the weak mixing angle. The bottom quark mass prediction is sensitive to the supersymmetric thresholds; it approaches the measured value for mu <0 and very large unified gaugino mass. The experimental measurement of the tau lepton mass determines tan(beta), and the strong gauge coupling and fine structure constant fix the unification scale and the unified gauge coupling.Comment: 40 pages, 9 figures, 9 tables, Revtex
    corecore