1,350 research outputs found
The Statistics of the BATSE Spectral Features
The absence of a BATSE line detection in a gamma-ray burst spectrum during
the mission's first six years has led to a statistical analysis of the
occurrence of lines in the BATSE burst database; this statistical analysis will
still be relevant if lines are detected. We review our methodology, and present
new simulations of line detectability as a function of the line parameters. We
also discuss the calculation of the number of ``trials'' in the BATSE database,
which is necessary for our line detection criteria.Comment: 5 pages, 2 figures, AIPPROC LaTeX, to appear in "Gamma-Ray Bursts,
4th Huntsville Symposium," eds. C. Meegan, R. Preece and T. Koshu
The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts using High Energy Resolution Data
This is the first in a series of gamma-ray burst spectroscopy catalogs from
the Burst And Transient Source Experiment (BATSE) on the Compton Gamma Ray
Observatory, each covering a different aspect of burst phenomenology. In this
paper, we present time-sequences of spectral fit parameters for 156 bursts
selected for either their high peak flux or fluence. All bursts have at least
eight spectra in excess of 45 sigma above background and span burst durations
from 1.66 to 278 s. Individual spectral accumulations are typically 128 ms long
at the peak of the brightest events, but can be as short as 16 ms, depending on
the type of data selected. We have used mostly high energy resolution data from
the Large Area Detectors, covering an energy range of typically 28 - 1800 keV.
The spectral model chosen is from a small empirically-determined set of
functions, such as the well-known `GRB' function, that best fits the
time-averaged burst spectra. Thus, there are generally three spectral shape
parameters available for each of the 5500 total spectra: a low-energy power-law
index, a characteristic break energy and possibly a high-energy power-law
index. We present the distributions of the observed sets of these parameters
and comment on their implications. The complete set of data that accompanies
this paper is necessarily large, and thus is archived electronically at:
http://www.journals.uchicago.edu/ApJ/journal/.Comment: Accepted for publication: ApJS, 125. 38 pages, 9 figures;
supplementary electronic archive to be published by ApJ; available from lead
author upon reques
Infrared reflection nebulae in Orion molecular cloud 2
New obervations of Orion Molecular Cloud-2 have been made from 1-100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry and spectrophotometry has shown that the extended emission regions associated with two of the previously known near infrared sources, IRS1 and IRS4, are infrared reflection nebulae, and that the compact sources IRS1 and IRS4 are the main luminosity sources in the cloud. The constraints from the far infrared observations and an analysis of the scattered light from the IRS1 nebula show that OMC-2/IRS1 can be characterized by L less than or equal to 500 Solar luminosities and T approx. 1000 K. The near infrared (1-5) micron albedo of the grains in the IRS1 nebula is greater than 0.08
Spectral Hardness Decay with Respect to Fluence in BATSE Gamma-Ray Bursts
We have analyzed the evolution of the spectral hardness parameter Epk as a
function of fluence in gamma-ray bursts. We fit 41 pulses within 26 bursts with
the trend reported by Liang & Kargatis (1996) which found that Epk decays
exponentially with respect to photon fluence. We also fit these pulses with a
slight modification of this trend, where Epk decays linearly with energy
fluence. In both cases, we found the set of 41 pulses to be consistent with the
trend. For the latter trend, which we believe to be more physical, the
distribution of the decay constant is roughly log-normal, with a mean of 1.75
+/- 0.07 and a FWHM of 1.0 +/- 0.1. Regarding an earlier reported invariance in
the decay constant among different pulses in a single burst, we found
probabilities of 0.49 to 0.84 (depending on the test used) that such invariance
would occur by coincidence, most likely due to the narrow distribution of decay
constant values among pulses.Comment: 17 pages, 7 figure pages, 2 table pages, submitted to The
Astrophysical Journa
BATSE Gamma-Ray Burst Line Search: V. Probability of Detecting a Line in a Burst
The physical importance of the apparent discrepancy between the detections by
pre-BATSE missions of absorption lines in gamma-ray burst spectra and the
absence of a BATSE line detection necessitates a statistical analysis of this
discrepancy. This analysis requires a calculation of the probability that a
line, if present, will be detected in a given burst. However, the connection
between the detectability of a line in a spectrum and in a burst requires a
model for the occurrence of a line within a burst. We have developed the
necessary weighting for the line detection probability for each spectrum
spanning the burst. The resulting calculations require a description of each
spectrum in the BATSE database. With these tools we identify the bursts in
which lines are most likely to be detected. Also, by assuming a small frequency
with which lines occur, we calculate the approximate number of BATSE bursts in
which lines of various types could be detected. Lines similar to the Ginga
detections can be detected in relatively few BATSE bursts; for example, in only
~20 bursts are lines similar to the GB 880205 pair of lines detectable. Ginga
reported lines at ~20 and ~40 keV whereas the low energy cutoff of the BATSE
spectra is typically above 20 keV; hence BATSE's sensitivity to lines is less
than that of Ginga below 40 keV, and greater above. Therefore the probability
that the GB 880205 lines would be detected in a Ginga burst rather than a BATSE
burst is ~0.2. Finally, we adopted a more appropriate test of the significance
of a line feature.Comment: 20 pages, AASTeX 4.0, 5 figures, Ap.J. in pres
BATSE Gamma-Ray Burst Line Search: IV. Line Candidates from the Visual Search
We evaluate the significance of the line candidates identified by a visual
search of burst spectra from BATSE's Spectroscopy Detectors. None of the
candidates satisfy our detection criteria: an F-test probability less than
10^-4 for a feature in one detector and consistency among the detectors which
viewed the burst. Most of the candidates are not very significant, and are
likely to be fluctuations. Because of the expectation of finding absorption
lines, the search was biased towards absorption features. We do not have a
quantitative measure of the completeness of the search which would enable a
comparison with previous missions. Therefore a more objective computerized
search has begun.Comment: 18 pages AASTEX 4.0; 4 POSTSCRIPT figures on request from
[email protected]
Genomic and Transcriptomic Alterations Associated with STAT3 Activation in Head and Neck Cancer.
BackgroundHyperactivation of STAT3 via constitutive phosphorylation of tyrosine 705 (Y705) is common in most human cancers, including head and neck squamous carcinoma (HNSCC). STAT3 is rarely mutated in cancer and the (epi)genetic alterations that lead to STAT3 activation are incompletely understood. Here we used an unbiased approach to identify genomic and epigenomic changes associated with pSTAT3(Y705) expression using data generated by The Cancer Genome Atlas (TCGA).Methods and findingsMutation, mRNA expression, promoter methylation, and copy number alteration data were extracted from TCGA and examined in the context of pSTAT3(Y705) protein expression. mRNA expression levels of 1279 genes were found to be associated with pSTAT3(705) expression. Association of pSTAT3(Y705) expression with caspase-8 mRNA expression was validated by immunoblot analysis in HNSCC cells. Mutation, promoter hypermethylation, and copy number alteration of any gene were not significantly associated with increased pSTAT3(Y705) protein expression.ConclusionsThese cumulative results suggest that unbiased approaches may be useful in identifying the molecular underpinnings of oncogenic signaling, including STAT3 activation, in HNSCC. Larger datasets will likely be necessary to elucidate signaling consequences of infrequent alterations
- …
