This is the first in a series of gamma-ray burst spectroscopy catalogs from
the Burst And Transient Source Experiment (BATSE) on the Compton Gamma Ray
Observatory, each covering a different aspect of burst phenomenology. In this
paper, we present time-sequences of spectral fit parameters for 156 bursts
selected for either their high peak flux or fluence. All bursts have at least
eight spectra in excess of 45 sigma above background and span burst durations
from 1.66 to 278 s. Individual spectral accumulations are typically 128 ms long
at the peak of the brightest events, but can be as short as 16 ms, depending on
the type of data selected. We have used mostly high energy resolution data from
the Large Area Detectors, covering an energy range of typically 28 - 1800 keV.
The spectral model chosen is from a small empirically-determined set of
functions, such as the well-known `GRB' function, that best fits the
time-averaged burst spectra. Thus, there are generally three spectral shape
parameters available for each of the 5500 total spectra: a low-energy power-law
index, a characteristic break energy and possibly a high-energy power-law
index. We present the distributions of the observed sets of these parameters
and comment on their implications. The complete set of data that accompanies
this paper is necessarily large, and thus is archived electronically at:
http://www.journals.uchicago.edu/ApJ/journal/.Comment: Accepted for publication: ApJS, 125. 38 pages, 9 figures;
supplementary electronic archive to be published by ApJ; available from lead
author upon reques