31 research outputs found

    Synthesis-View: visualization and interpretation of SNP association results for multi-cohort, multi-phenotype data and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initial genome-wide association study (GWAS) discoveries are being further explored through the use of large cohorts across multiple and diverse populations involving meta-analyses within large consortia and networks. Many of the additional studies characterize less than 100 single nucleotide polymorphisms (SNPs), often include multiple and correlated phenotypic measurements, and can include data from multiple-sites, multiple-studies, as well as multiple race/ethnicities. New approaches for visualizing resultant data are necessary in order to fully interpret results and obtain a broad view of the trends between DNA variation and phenotypes, as well as provide information on specific SNP and phenotype relationships.</p> <p>Results</p> <p>The Synthesis-View software tool was designed to visually synthesize the results of the aforementioned types of studies. Presented herein are multiple examples of the ways Synthesis-View can be used to report results from association studies of DNA variation and phenotypes, including the visual integration of p-values or other metrics of significance, allele frequencies, sample sizes, effect size, and direction of effect.</p> <p>Conclusions</p> <p>To truly allow a user to visually integrate multiple pieces of information typical of a genetic association study, innovative views are needed to integrate multiple pieces of information. As a result, we have created "Synthesis-View" software for the visualization of genotype-phenotype association data in multiple cohorts. Synthesis-View is freely available for non-commercial research institutions, for full details see <url>https://chgr.mc.vanderbilt.edu/synthesisview</url>.</p

    Cyborg Activism: Exploring the reconfigurations of democratic subjectivity in Anonymous

    Get PDF
    This article develops the concept of cyborg activism as novel configuration of democratic subjectivity in the Information Age by exploring the online collectivity Anonymous as a prototype. By fusing elements of human/machine and organic/digital the cyborg disrupts modern logics of binary thinking. Cyborg activism emerges as the reconfiguration of equality/hierarchy, reason/emotion, and nihilism/idealism. Anonymous demonstrates how through the use of contingent and ephemeral digital personae hierarchies in cyborg activism prove more volatile than in face-to-face settings. Emotions appear as an essential part of a politics of passion, which enables pursuing laughter and joy, expressing anger, and experiencing empowerment as part of a reasoned, strategic politics. Anonymous’ political content reconfigures nihilist sentiments, frustration, and political disenchantment on the one hand with idealist world views on the other. This enables the cohabitation and partial integration of a great diversity of political claims rooted in various ideologies

    Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome)

    Get PDF
    Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9

    Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): And randomised, phase 3, open-label, multicentre study

    Get PDF
    Background: Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1:1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m2 on days 1 and 2 of cycle 1; 56 mg/m2 thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1·3 mg/m2; intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. The trial is registered at ClinicalTrials.gov, number NCT01568866. Findings: Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11·9 months (IQR 9·3-16·1) in the carfilzomib group and 11·1 months (8·2-14·3) in the bortezomib group. Median progression-free survival was 18·7 months (95% CI 15·6-not estimable) in the carfilzomib group versus 9·4 months (8·4-10·4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0·53 [95% CI 0·44-0·65]; p<0·0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation: For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option. Funding: Onyx Pharmaceuticals, Inc., an Amgen subsidiary

    Deep brain stimulation targeting the fornix for mild Alzheimer dementia: design of the ADvance randomized controlled trial

    No full text
    Kathryn B Holroyd,1 Lisa Fosdick,2 Gwenn S Smith,1 Jeannie-Marie Leoutsakos,1 Cynthia A Munro,1 Esther S Oh,1 Kristen E Drake,2 Paul B Rosenberg,1 William S Anderson,1 Stephen Salloway,3&ndash;5 J Cara Pendergrass,6 Anna D Burke,7 David A Wolk,8 David F Tang-Wai,9&ndash;11 Francisco A Ponce,12 Wael F Asaad,13,14 Marwan N Sabbagh,15 Michael S Okun,16 Gordon Baltuch,17 Kelly D Foote,18 Steven D Targum,2,6 Andres M Lozano,10,11 Constantine G Lyketsos1 1Johns Hopkins University Memory and Alzheimer&#39;s Treatment Center, Baltimore, MD, 2Functional Neuromodulation Ltd, Minneapolis, MN, 3Department of Neurology, Butler Hospital, 4Department of Neurology, Rhode Island Hospital, 5Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, 6Clintara LLC, Boston, MA, 7Banner Alzheimer&#39;s Institute, Phoenix, AZ, 8Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; 9Department of Neurology, 10Department of Neurosurgery, University of Toronto, 11Division of Neurology, University Health Network Memory Clinic, Toronto, ON, Canada; 12Division of Neurological Surgery, Barrow Neurological Institute, St Joseph&#39;s Hospital and Medical Center, Phoenix, AZ, 13Department of Neurosurgery, Rhode Island Hospital, 14Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, 15Banner Sun Health Research Institute, Sun City, AZ, 16Center for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida &ndash; Gainsville, Gainsville, FL, 17Center for Functional and Restorative Neurosurgery, University of Pennsylvania, Philadelphia, PA, 18Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainsville, FL, USA Background: There are currently few available treatments and no cure for Alzheimer disease (AD), a growing public health burden. Animal models and an open-label human trial have indicated that deep brain stimulation (DBS) of memory circuits may improve symptoms and possibly slow disease progression. The ADvance trial was designed to examine DBS of the fornix as a treatment for mild AD. Methods: ADvance is a randomized, double-blind, placebo-controlled, delayed-start, multicenter clinical trial conducted at six sites in the US and one site in Canada. Eighty-five subjects initially consented to be screened for the trial. Of these, 42 subjects who met inclusion and exclusion criteria were implanted with DBS leads anterior to the columns of the fornix bilaterally. They were randomized 1:1 to DBS &ldquo;off&rdquo; or DBS &ldquo;on&rdquo; groups for the initial 12 months of follow-up. After 1 year, all subjects will have their devices turned &ldquo;on&rdquo; for the remainder of the study. Postimplantation, subjects will return for 13 follow-up visits over 48 months for cognitive and psychiatric assessments, brain imaging (up to 12 months), and safety monitoring. The primary outcome measures include Alzheimer&#39;s Disease Assessment Scale &ndash; cognitive component (ADAS-cog-13), Clinical Dementia Rating sum of boxes (CDR-SB), and cerebral glucose metabolism measured with positron emission tomography. This report details the study methods, baseline subject characteristics of screened and implanted participants, and screen-to-baseline test&ndash;retest reliability of the cognitive outcomes. Results: Implanted subjects had a mean age of 68.2 years, were mostly male (55%), and had baseline mean ADAS-cog-13 and CDR-SB scores of 28.9 (SD, 5.2) and 3.9 (SD, 1.6), respectively. There were no significant differences between screened and implanted or nonimplanted subjects on most demographic or clinical assessments. Implanted subjects had significantly lower (better) ADAS-cog-11 (17.5 vs 21.1) scores, but did not differ on CDR-SB. Scores on the major outcome measures for the trial were consistent at screening and baseline. Conclusion: ADvance was successful in enrolling a substantial group of patients for this novel application of DBS, and the study design is strengthened by rigorous subject selection from seven sites, a double-blind placebo-controlled design, and extensive open-label follow-up. Keywords: deep brain stimulation, Alzheimer disease, fornix, methods, clinical trial

    Genomic architecture of pharmacological efficacy and adverse events

    No full text
    The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, including efficacy and adverse events. Pharmacogenomics studies have identified pervasive genetic effects on treatment outcomes, resulting in the development of genetic biomarkers for optimization of drug therapy. Pharmacogenomics-based tests are already being applied in clinical decision making. However, despite substantial progress in identifying the genetic etiology of pharmacological response, current biomarker panels still largely rely on single gene tests with a large portion of the genetic effects remaining to be discovered. Future research must account for the combined effects of multiple genetic variants, incorporate pathway-based approaches, explore gene-gene interactions and nonprotein coding functional genetic variants, extend studies across ancestral populations, and prioritize laboratory characterization of molecular mechanisms. Because genetic factors can play a key role in drug response, accurate biomarker tests capturing the main genetic factors determining treatment outcomes have substantial potential for improving individual clinical care
    corecore