104 research outputs found
Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies
BACKGROUND: Mitochondria play a critical role in the cell and have DNA independent of the nuclear genome. There is much evidence that mitochondrial DNA (mtDNA) variation plays a role in human health and disease, however, this area of investigation has lagged behind research into the role of nuclear genetic variation on complex traits and phenotypic outcomes. Phenome-wide association studies (PheWAS) investigate the association between a wide range of traits and genetic variation. To date, this approach has not been used to investigate the relationship between mtDNA variants and phenotypic variation. Herein, we describe the development of a PheWAS framework for mtDNA variants (mt-PheWAS). Using the Metabochip custom genotyping array, nuclear and mitochondrial DNA variants were genotyped in 11,519 African Americans from the Vanderbilt University biorepository, BioVU. We employed both polygenic modeling and association testing with mitochondrial single nucleotide polymorphisms (mtSNPs) to explore the relationship between mtDNA variants and a group of eight cardiovascular-related traits obtained from de-identified electronic medical records within BioVU. RESULTS: Using polygenic modeling we found evidence for an effect of mtDNA variation on total cholesterol and type 2 diabetes (T2D). After performing comprehensive mitochondrial single SNP associations, we identified an increased number of single mtSNP associations with total cholesterol and T2D compared to the other phenotypes examined, which did not have more significantly associated SNPs than would be expected by chance. Among the mtSNPs significantly associated with T2D we identified variant mt16189, an association previously reported only in Asian and European-descent populations. CONCLUSIONS: Our replication of previous findings and identification of novel associations from this initial study suggest that our mt-PheWAS approach is robust for investigating the relationship between mitochondrial genetic variation and a range of phenotypes, providing a framework for future mt-PheWAS
Diverse Convergent Evidence in the Genetic Analysis of Complex Disease: Coordinating Omic, Informatic, and Experimental Evidence to Better Identify and Validate Risk Factors
In omic research, such as genome wide association studies, researchers seek to repeat their results in other datasets to reduce false positive findings and thus provide evidence for the existence of true associations. Unfortunately this standard validation approach cannot completely eliminate false positive conclusions, and it can also mask many true associations that might otherwise advance our understanding of pathology. These issues beg the question: How can we increase the amount of knowledge gained from high throughput genetic data? To address this challenge, we present an approach that complements standard statistical validation methods by drawing attention to both potential false negative and false positive conclusions, as well as providing broad information for directing future research. The Diverse Convergent Evidence approach (DiCE) we propose integrates information from multiple sources (omics, informatics, and laboratory experiments) to estimate the strength of the available corroborating evidence supporting a given association. This process is designed to yield an evidence metric that has utility when etiologic heterogeneity, variable risk factor frequencies, and a variety of observational data imperfections might lead to false conclusions. We provide proof of principle examples in which DiCE identified strong evidence for associations that have established biological importance, when standard validation methods alone did not provide support. If used as an adjunct to standard validation methods this approach can leverage multiple distinct data types to improve genetic risk factor discovery/validation, promote effective science communication, and guide future research directions
Phenome-wide association study to explore relationships between immune system related genetic loci and complex traits and diseases
CITATION: Verma, A., et al. 2016. Phenome-wide association study to explore relationships between immune system related genetic loci and complex traits and diseases. PLoS ONE, 11(8):e0160573, doi:10.1371/journal.
pone.0160573.The original publication is available at http://journals.plos.org/plosoneThis study highlights the utility of using PheWAS in conjunction with EHRs to discover new genotypic-phenotypic associations for immune-system related genetic loci.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160573Publisher's versio
Novel EDGE encoding method enhances ability to identify genetic interactions
Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041;intergenic region of chromosome 7)-rs4695885 (MAF: 0.34;intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action. Author summary Although traditional genetic encodings are widely implemented in genetics research, including in genome-wide association studies (GWAS) and epistasis, each method makes assumptions that may not reflect the underlying etiology. Here, we introduce a novel encoding method that estimates and assigns an individualized data-driven encoding for each single nucleotide polymorphism (SNP): the elastic data-driven genetic encoding (EDGE). With simulations, we demonstrate that this novel method is more accurate and robust than traditional encoding methods in estimating heterozygous genotype values, reducing the type I error, and detecting SNP-SNP interactions. We further applied the traditional encodings and EDGE to biomedical data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes, and EDGE identified a novel interaction for age-related cataract not detected by traditional methods, which replicated in data from the UK Biobank. EDGE provides an alternative approach to understanding and modeling diverse SNP models and is recommended for studying complex genetics in common human phenotypes
Recommended from our members
Consistent Directions of Effect for Established Type 2 Diabetes Risk Variants Across Populations: The Population Architecture using Genomics and Epidemiology (PAGE) Consortium
Common genetic risk variants for type 2 diabetes (T2D) have primarily been identified in populations of European and Asian ancestry. We tested whether the direction of association with 20 T2D risk variants generalizes across six major racial/ethnic groups in the U.S. as part of the Population Architecture using Genomics and Epidemiology Consortium (16,235 diabetes case and 46,122 control subjects of European American, African American, Hispanic, East Asian, American Indian, and Native Hawaiian ancestry). The percentage of positive (odds ratio [OR] >1 for putative risk allele) associations ranged from 69% in American Indians to 100% in European Americans. Of the nine variants where we observed significant heterogeneity of effect by racial/ethnic group (Pheterogeneity 1) in at least five groups. The marked directional consistency of association observed for most genetic variants across populations implies a shared functional common variant in each region. Fine-mapping of all loci will be required to reveal markers of risk that are important within and across populations
Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study
Background: Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium
Regulatory Polymorphisms in Human DBH Affect Peripheral Gene Expression and Sympathetic Activity
Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine in the CNS and peripherally. DBH variants are associated with large changes in circulating DBH and implicated in multiple disorders; yet causal relationships and tissue-specific effects remain unresolved
A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains
Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention
Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study
For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (∼20,000), African American (∼9,000), American Indian (∼6,000), Mexican American/Hispanic (∼2,500), Japanese/East Asian (∼690), and Pacific Islander/Native Hawaiian (∼175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits
- …