13 research outputs found

    The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Get PDF
    Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution

    Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis

    Get PDF
    The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E

    5S rDNA characterization in twelve Sciaenidae fish species (Teleostei, Perciformes): depicting gene diversity and molecular markers

    No full text
    In order to extend the genetic data on the Sciaenidae fish family, the present study had the purpose to characterize PCR-generated 5S rDNA repeats of twelve species of this group through PAGE (Polyacrylamide Gel Electrophoresis) analysis. The results showed the occurrence of at least two different 5S rDNA size classes in all the species. Moreover, 5S rDNA repeats of one of the studied species - Isopisthus parvipinnis - were cloned and subjected to nucleotide sequencing and Southern blot membrane hybridization analyses, which permitted to confirm the existence of two major 5S rDNA classes. Phylogenetic analysis based on the nucleotide sequences of different 5S rDNA repeats of I. parvipinnis lead to their separation into two major clusters. These results may reflect the high dynamism that rules the evolution rate of 5S rDNA repeats. The obtained data suggest that 5S rDNA can be useful in genetic analyses to identify species-specific markers and determine relationships among species of the Sciaenidae group
    corecore