4 research outputs found

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., GonzĂĄlez Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-MacĂ­as, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a CiĂȘncia e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    Data from: State-space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape

    No full text
    1.Habitat loss is a major cause of species loss, and is expected to increase. Loss of habitat is often associated with fragmentation of remaining habitat. Whether species can persist in fragmented landcsapes may depend on their movement behaviour, which determines their capability to respond flexibility to changes in habitat structure and spatial distribution of patches. 2.Movement is frequently generalised to describe a total area used, or segmented to highlight resource use, often overlooking finer-scale individual behaviours. We applied hidden Markov models (HMM) to movement data from 26 eastern bettongs (Bettongia gaimardi) in fragmented landscapes. HMMs are able to identify distinct behaviour states associated with different movement patterns, and discover how these behaviours are associated with habitat features. 3.Three distinct behaviour states were identified and interepretated as denning, foraging and fast-travelling. The probability of occurrence of each state, and of transitions between them, were predicted by variation in tree-canopy cover and understorey vegetation density. Denning was associated with woodland with low canopy cover but high vegetation density, foraging with high canopy cover but low vegetation density, and fast-travelling with low canopy cover and low vegetation density. 4.Bettongs did move outside woodland patches, often fast-travelling through pasture and using smaller stands of trees as stepping-stones between neighbouring patches. Males were more likely to fast-travel and venture outside woodland patches, while females concentrated their movement within woodland patches.5. Our work demonstrates the value of using animal movement to understand how animals respond to variation in habitat structure, including fragmentation. Analysis using HMMs was able to characterize distinct habitat types needed for foraging and denning, and identify landscape features that facilitate movement between patches. Future work should extend the use of individual movement analyses to guide management of fragmented habitat in ways that support persistence of species potentially threatened by habitat loss

    State-space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape

    Get PDF
    Gardiner R, Hamer R, Leos-Barajas V, Penaherrera-Palma C, Jones ME, Johnson C. State-space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape. Ecology and Evolution. 2019;9(17):9804-9814.Habitat loss is a major cause of species loss and is expected to increase. Loss of habitat is often associated with fragmentation of remaining habitat. Whether species can persist in fragmented landscapes may depend on their movement behavior, which determines their capability to respond flexibility to changes in habitat structure and spatial distribution of patches. Movement is frequently generalized to describe a total area used, or segmented to highlight resource use, often overlooking finer-scale individual behaviors. We applied hidden Markov models (HMM) to movement data from 26 eastern bettongs (Bettongia gaimardi) in fragmented landscapes. HMMs are able to identify distinct behavior states associated with different movement patterns and discover how these behaviors are associated with habitat features. Three distinct behavior states were identified and interpreted as denning, foraging, and fast-traveling. The probability of occurrence of each state, and of transitions between them, was predicted by variation in tree-canopy cover and understorey vegetation density. Denning was associated with woodland with low canopy cover but high vegetation density, foraging with high canopy cover but low vegetation density, and fast-traveling with low canopy cover and low vegetation density. Bettongs did move outside woodland patches, often fast-traveling through pasture and using smaller stands of trees as stepping stones between neighboring patches. Males were more likely to fast-travel and venture outside woodlands patches, while females concentrated their movement within woodland patches. Synthesis and applications: Our work demonstrates the value of using animal movement to understand how animals respond to variation in habitat structure, including fragmentation. Analysis using HMMs was able to characterize distinct habitat types needed for foraging and denning, and identify landscape features that facilitate movement between patches. Future work should extend the use of individual movement analyses to guide management of fragmented habitat in ways that support persistence of species potentially threatened by habitat loss

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    No full text
    [Extract] Our previously published paper1 provided global fine-scale spatiotemporal estimates (1° × 1°; monthly) of overlap and fishing exposure risk (FEI) between satellite-tracked shark space use and automatic identification system (AIS) longline fishing effort. We did not assess shark mortality directly, but in addition to replying to the Comment by Murua et al.2, we confirm—using regression analysis of spatially matched data—that fishing-induced pelagic shark mortality (catch per unit effort (CPUE)) is greater where FEI is higher. We focused on assessing shark horizontal spatiotemporal overlap and exposure risk with fisheries because spatial overlap is a major driver of fishing capture susceptibility and previous shark ecological risk assessments (ERAs) assumed a homogenous shark density within species-range distributions3,4,5 or used coarse-scale modelled occurrence data, rather than more ecologically realistic risk estimates in heterogeneous habitats that were selected by sharks over time. Furthermore, our shark spatial exposure risk implicitly accounts for other susceptibility factors with equal or similar probabilities to those commonly used in shark ERAs3,5
    corecore